98%
921
2 minutes
20
Near-infrared imaging devices are extensively used in medical diagnosis, night vision, and security monitoring. However, existing traditional imaging devices rely on a bunch of refracting lenses, resulting in large, bulky imaging systems that restrict their broader utility. The emergence of flat meta-optics offers a potential solution to these limitations, but existing research on compact integrated devices based on near-infrared meta-optics is insufficient. In this study, we propose an integrated NIR imaging camera that utilizes large-size metalens with a silicon nanostructure with high transmission efficiency. Through the detection of target and animal and plant tissue samples, the ability to capture biological structures and their imaging performance was verified. Through further integration of the NIR imaging device, the device significantly reduces the size and weight of the system and optimizes the aperture to achieve excellent image brightness and contrast. Additionally, venous imaging of human skin shows the potential of the device for biomedical applications. This research has an important role in promoting the miniaturization and lightweight of near-infrared optical imaging devices, which is expected to be applied to medical testing and night vision imaging.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11945997 | PMC |
http://dx.doi.org/10.3390/nano15060453 | DOI Listing |
J Cardiovasc Electrophysiol
September 2025
Cardiac Electrophysiology Section, Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, Ohio, USA.
Introduction: Iatrogenic lead perforation is a rare but serious complication of cardiac implantable electronic device (CIED) implantation. Evidence on percutaneous management of subacute or delayed cases remains limited.
Methods: We retrospectively reviewed 38 patients treated for iatrogenic lead perforation between January 2012 and October 2024.
J Appl Clin Med Phys
September 2025
Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia, USA.
Purpose: Real‑time magnetic resonance-guided radiation therapy (MRgRT) integrates MRI with a linear accelerator (Linac) for gating and adaptive radiotherapy, which requires robust image‑quality assurance over a large field of view (FOV). Specialized phantoms capable of accommodating this extensive FOV are therefore essential. This study compares the performance of four commercial MRI phantoms on a 0.
View Article and Find Full Text PDFJ Appl Clin Med Phys
September 2025
Department of Radiation Oncology, University of Utah, Salt Lake City, Utah, USA.
Purpose: The development of on-board cone-beam computed tomography (CBCT) has led to improved target localization and evaluation of patient anatomical change throughout the course of radiation therapy. HyperSight, a newly developed on-board CBCT platform by Varian, has been shown to improve image quality and HU fidelity relative to conventional CBCT. The purpose of this study is to benchmark the dose calculation accuracy of Varian's HyperSight cone-beam computed tomography (CBCT) on the Halcyon platform relative to fan-beam CT-based dose calculations and to perform end-to-end testing of HyperSight CBCT-only based treatment planning.
View Article and Find Full Text PDFHead Face Med
September 2025
Department of Oral and Maxillofacial Surgery, University Hospital Tübingen, Tübingen, Germany.
Background: The treatment of mandibular angle fractures remains controversial, particularly regarding the method of fixation. The primary aim of this study was to compare surgical outcomes following treatment with 1-plate versus 2-plate fixation across two oral and maxillofacial surgery clinics. The secondary aim was to evaluate associations between patient-, trauma-, and procedure-specific factors with postoperative complications and to identify high-risk patients for secondary osteosynthesis.
View Article and Find Full Text PDFNat Aging
September 2025
Aging Biomarker Consortium (ABC), Beijing, China.
The global surge in the population of people 60 years and older, including that in China, challenges healthcare systems with rising age-related diseases. To address this demographic change, the Aging Biomarker Consortium (ABC) has launched the X-Age Project to develop a comprehensive aging evaluation system tailored to the Chinese population. Our goal is to identify robust biomarkers and construct composite aging clocks that capture biological age, defined as an individual's physiological and molecular state, across diverse Chinese cohorts.
View Article and Find Full Text PDF