Sampling reduced density matrix to extract fine levels of entanglement spectrum and restore entanglement Hamiltonian.

Nat Commun

Department of Physics, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou, China.

Published: March 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The reduced density matrix (RDM) plays a key role in quantum entanglement and measurement, as it allows the extraction of almost all physical quantities related to the reduced degrees of freedom. However, restricted by the degrees of freedom in the environment, the total system size is often limited, let alone the subsystem. To address this challenge, we propose a quantum Monte Carlo scheme with a low technical barrier, enabling precise extraction of the RDM. To demonstrate the power of the method, we present the fine levels of the entanglement spectrum (ES), which is the logarithmic eigenvalues of the RDM. We clearly show the ES for a 1D ladder with a long entangled boundary, and that for the 2D Heisenberg model with a tower of states. Furthermore, we put forward an efficient way to restore the entanglement Hamiltonian in operator-form from the sampled RDM data. Our simulation results, utilizing unprecedentedly large system sizes, establish a practical computational framework for determining entanglement quantities based on the RDM, such as the ES, particularly in scenarios where the environment has a huge number of degrees of freedom.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11933365PMC
http://dx.doi.org/10.1038/s41467-025-58058-0DOI Listing

Publication Analysis

Top Keywords

degrees freedom
12
reduced density
8
density matrix
8
fine levels
8
levels entanglement
8
entanglement spectrum
8
restore entanglement
8
entanglement hamiltonian
8
entanglement
6
rdm
5

Similar Publications

Tibia-Fibula Relative Motion During Gait Cycle by 2D-3D Registration.

J Orthop Res

September 2025

Department of Orthopedic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, Chaoyang District, China.

Injuries to the distal tibiofibular joint are often associated with ankle fractures, sports-related injuries, or instability, whereas proximal tibiofibular joint injuries are more commonly present with lateral- or posterolateral-compartment lesions of the knee. These conditions may be related to the relative motion between the tibia and fibula; however, precise movement patterns have yet to be fully elucidated. This study analyzes the relative motion of the tibia and fibula in 16 healthy adults (32 bones; 8 males and 8 females) throughout a normal gait cycle.

View Article and Find Full Text PDF

Purpose: Develop a musculoskeletal-environment interaction model to reconstruct the dynamic-interaction process in skiing.

Methods: This study established a skier-ski-snow interaction (SSSI) model that integrated a 3D full-body musculoskeletal model, a flexible ski model, a ski boot model, a ski-snow contact model, and an air resistance model. An experimental method was developed to collect kinematic and kinetic data using IMUs, GPS, and plantar pressure measurement insoles, which were cost-effective and capable of capturing motion in large-scale field conditions.

View Article and Find Full Text PDF

Nonlinear Scaling of Water-Ion Interactions and Dynamics in Alkaline Solutions.

J Phys Chem Lett

September 2025

Pacific Northwest National Laboratory, Richland, Washington 99354, United States.

Water-ion interactions govern the physicochemical properties of aqueous solutions, impacting the structure of the hydrogen bonding network and ion diffusivities. To elucidate these effects under alkaline conditions relevant to diverse application spaces, we examined NaOD-DO solutions using two-dimensional infrared spectroscopy (2D-IR), small-angle X-ray scattering (SAXS), and nuclear magnetic resonance spectroscopy (NMR). Vibrational energy transfer between the donor anion SeCN, used as a 2D-IR probe, and the acceptor anion OD was used to track the average separation distance of ions in the DO solutions, while SAXS and NMR experiments measured the structure of the bulk DO solvent.

View Article and Find Full Text PDF

Event-triggered dynamic landing control of cooperative USV-UAV plant with the compensation mechanism for rolling kinematics.

ISA Trans

August 2025

College of Automotive Engineering, Jilin University, No. 5988, Renmin Street, Nanguan District, Changchun City, Jilin Province 130000, China. Electronic address:

In this paper, an event-triggered fuzzy control algorithm is proposed for the unmanned surface vessel (USV) and unmanned aerial vehicle (UAV) cooperative plant to achieve the high-precision landing mission. In the guidance module, an L virtual ship-L virtual aerial vehicle (LVS-LVA) guidance principle is developed to generate the reasonable reference signals for the USV-UAV plant under the landing mission. The proposed guidance principle incorporates a rolling kinematic compensation mechanism based on the 4-degree-of-freedom model of USV, specifically designed to counteract wave-induced rolling disturbances during UAV landing operations on unstable marine platforms.

View Article and Find Full Text PDF

The concept of parity-time symmetry has firmly established non-Hermiticity as a versatile degree of freedom on a variety of physical platforms. In general, the non-Hermitian dynamics of open systems are perceived to be inextricably linked to complex-valued potentials facilitating the local attenuation and coherent amplification in wave mechanics. Along these lines, time reversal symmetry is associated with a complex conjugation of the potential landscape, in essence swapping gain and loss.

View Article and Find Full Text PDF