98%
921
2 minutes
20
Multiple sclerosis (MS) is a chronic inflammatory disorder characterized by demyelination, with failed remyelination leading to progressive axon loss in chronic stages. Oligodendrocyte precursor cells (OPCs) are critical for remyelination. Recent studies suggest that both hypoxia and ferroptosis play crucial roles in the dysfunctional differentiation of OPCs. This research seeks to identify key genes linked to hypoxia and ferroptosis and immune infiltration characteristics in OPCs derived from induced pluripotent stem cells (iPSCs) of MS patients and to construct a diagnostic model centered on these pivotal genes. We analyzed gene expression data from the GSE196575 and GSE147315 datasets and compared MS patients with healthy individuals. Using weighted gene coexpression network analysis (WGCNA), we pinpointed primary module genes and essential genes associated with hypoxia, ferroptosis, and MS. The ferroptosis Z score and the hypoxia Z score calculated via gene set variation analysis (GSVA) were greater in the iPSC-derived OPCs of MS patients than those of the control group. The implicated genes are predominantly linked to the PI3K/Akt/mTOR pathway, as identified through Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. A protein-protein interaction (PPI) network of crucial genes revealed 10 central hub genes (COL4A1, COL4A2, ITGB5, ITGB1, ITGB8, ITGAV, VIM, FLNA, VCL, and SPARC). The robust expression of ITGB1, ITGB8, and VIM was validated in the GSE151306 dataset, supporting their role as key hub genes. Additionally, an interaction network between transcription factors (TFs) and hub genes was established via Transcriptional Regulatory Relationships Unraveled by Sentence-based Text (TRRUST), which identified five key TFs. The results of this study could help elucidatenovel biomarkers or therapeutic targets for MS.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3791/67055 | DOI Listing |
J Cardiovasc Transl Res
September 2025
Department of Cardiology, Bei'an Hospital, Beidahuang Group, Heihe, 164000, Heilongjiang Province, China.
Myocardial ischemia/reperfusion injury (MIRI) worsens ischemic damage, with ferroptosis as a key mediator of this iron-dependent cell death. Lactylation, a novel epigenetic modification, remains poorly understood in MIRI-associated ferroptosis. This study aimed to elucidate the mechanistic link between lactylation and ferroptosis in MIRI.
View Article and Find Full Text PDFAdv Healthc Mater
September 2025
State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China.
Overcoming resistance to radiotherapy remains a significant challenge in breast cancer management. A one-step coordinated synthesis of BODIPY-integrated photodynamic nanozymes (FZBNPs) that facilitate an orthogonal catalytic cascade for radiotherapy potentiation is presented. The engineered FZBNPs simultaneously alleviate tumor hypoxia through catalase-mimetic oxygen (O) generation and amplify reactive oxygen species (ROS) production via peroxidase-like activity, synergizing with BODIPY-mediated singlet oxygen (O) generation under 660 nm light irradiation.
View Article and Find Full Text PDFKaohsiung J Med Sci
September 2025
Department of Gynecology, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China.
Ferroptosis resistance is a key player in cervical cancer (CC) development. Hypoxia is a negative factor affecting CC treatment by inducing ferroptosis resistance. Our study aimed to investigate the detailed mechanisms of hypoxia-induced ferroptosis resistance in CC cells.
View Article and Find Full Text PDFInt Immunopharmacol
September 2025
Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei
Backgrounds: As an immunometabolic enzyme, Interleukin-4 induced gene 1 (IL4I1) catalyzes aromatic amino acid degradation to modulate immune functions. Our prior work demonstrated that IL4I1 promotes anti-inflammatory macrophage polarization, thereby attenuating atherosclerosis progression-a key pathological precursor to myocardial infarction (MI). Despite this established role in plaque development, the functional significance of this immunometabolic enzyme in post-MI cardiac injury remains unexplored.
View Article and Find Full Text PDFLife Sci
September 2025
Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China. Electronic address:
Acute Kidney Injury (AKI) is a complex clinical syndrome marked by a rapid decline in renal function, most commonly triggered by ischemia, hypoxia, or nephrotoxic insults, and is associated with significant morbidity and mortality. Despite advances in understanding its underlying mechanisms, current treatments remain predominantly supportive, with no effective therapies available to reverse or repair renal damage. Although biomarker-guided precision medicine holds promise, its clinical utility requires further validation through large-scale trials.
View Article and Find Full Text PDF