Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Accurate, noninvasive dysphagia assessment is important for rehabilitation therapy but current clinical diagnostic methods are either invasive or subjective. Surface electromyography (sEMG) that monitors muscle activity during swallowing, offers a promising alternative. However, existing sEMG electrode arrays for dysphagia assessment remain challenging in combining the advantages of a large coverage area and strong compliance to the entire swallowing muscles. Here, we report a stretchable, breathable, large-area high-density sEMG (HD-sEMG) electrode array, which enables intimate contact to complex surface of the submental and infrahyoid muscles to detect high-fidelity HD-sEMG signals during swallowing. The electrode array features a 64-channel soft on-skin sensing array for comprehensive data capture, and a stiff connector for simple and reliable connection to an external acquisition setup. Systemically experimental studies revealed the easy operability of the soft HD-sEMG electrode array for effortless integration with the skin, as well as the excellent mechanical and electrical characteristics even subject to substantial skin deformations. By comparing HD-sEMG signals collected from 38 participants, three objective indicators for quantitative dysphagia evaluation were discussed. Finally, a machine learning model was developed to accurately and automatically classify the severity of dysphagia, and the factors affecting the recognition accuracy of the model were discussed in depth.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12224961PMC
http://dx.doi.org/10.1002/advs.202500472DOI Listing

Publication Analysis

Top Keywords

electrode array
16
dysphagia assessment
12
accurate noninvasive
8
noninvasive dysphagia
8
high-density semg
8
semg electrode
8
submental infrahyoid
8
infrahyoid muscles
8
hd-semg electrode
8
hd-semg signals
8

Similar Publications

Novel hypoglossal stimulation markedly improves airflow and airway collapsibility in OSA.

Chest

September 2025

Flinders Health and Medical Research Institute/Adelaide Institute for Sleep Health, Flinders University, Bedford Park, South Australia, Australia.

Background: Hypoglossal nerve stimulation (HNS) to treat obstructive sleep apnea (OSA) currently requires placement of a cuff or 'saddle' electrode around or adjacent to the hypoglossal nerve(s). Limitations for this therapy include cost, invasiveness, and variable efficacy.

Research Question: Can HNS applied via percutaneous implantation of a linear, multi-pair electrode array restore airflow to airway narrowing and/or obstruction, and improve airway collapsibility in people with OSA?

Study Design And Methods: Participants with OSA undergoing drug induced sleep endoscopy with propofol were instrumented with an epiglottic pressure catheter, nasal mask and pneumotachograph.

View Article and Find Full Text PDF

Introduction: Efficient preclinical prediction of cardiovascular side effects poses a pivotal challenge for the pharmaceutical industry. Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are becoming increasingly important in this field due to inaccessibility of human native cardiac tissue. Current preclinical hiPSC-CMs models focus on functional changes such as electrophysiological abnormalities, however other parameters, such as structural toxicity, remain less understood.

View Article and Find Full Text PDF

Introduction: The dorsal horn (DH) of the spinal cord is physiologically immature at birth. Spinal excitability increases and wide dynamic range (WDR) neurons in lamina V have lowered activation thresholds and larger receptive field sizes.

Objective: The DH is composed of 5 laminae containing diverse interneuronal populations yet our understanding of the physiology of the DH is based on behavioural studies or extrapolation of single cell WDR recordings to the whole network.

View Article and Find Full Text PDF

An electrostatic linear ion trap (ELIT) is used to trap ions between two ion mirrors with image current detection by central detection electrode. Transformation of the time-domain signal to the frequency-domain via Fourier transform (FT) yields an ion frequency spectrum that can be converted to a mass-to-charge scale. Injection of ions into an ELIT from an external ion source leads to a time-of-flight ion separation that ultimately determines the range of over which ions can be collected from a given ion injection step.

View Article and Find Full Text PDF

CuCo-Layered Double Hydroxide Nanosheets Grown on Hierarchical Carbonized Wood as Bifunctional Electrode for Supercapacitor and Hydrogen Evolution Reaction.

Adv Sci (Weinh)

September 2025

Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China.

Carbonized wood has great potential as a self-supported electrode for energy storage/conversion applications. However, developing efficient and economical bifunctional electrodes by customizing the surface structure remains a challenge. This study proposes a novel multifunctional electrode design strategy, using N/P co-doped carbonized wood (NPCW) as carriers and in situ grows copper nanoparticles (Cu NPs) as nucleation centers to induce vertical growth of CuCo-layered double hydroxid (LDH) nanosheets along the substrate.

View Article and Find Full Text PDF