Artificial Intelligence Models to Identify Patients with High Probability of Glaucoma Using Electronic Health Records.

Ophthalmol Sci

Department of Ophthalmology, Byers Eye Institute, Stanford University, Palo Alto, California.

Published: December 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Purpose: Early detection of glaucoma allows for timely treatment to prevent severe vision loss, but screening requires resource-intensive examinations and imaging, which are challenging for large-scale implementation and evaluation. The purpose of this study was to develop artificial intelligence models that can utilize the wealth of data stored in electronic health records (EHRs) to identify patients who have high probability of developing glaucoma, without the use of any dedicated ophthalmic imaging or clinical data.

Design: Cohort study.

Participants: A total of 64 735 participants who were ≥18 years of age and had ≥2 separate encounters with eye-related diagnoses recorded in their EHR records in the All of Us Research Program, a national multicenter cohort of patients contributing EHR and survey data, and who were enrolled from May 1, 2018, to July 1, 2022.

Methods: We developed models to predict which patients had a diagnosis of glaucoma, using the following machine learning approaches: (1) penalized logistic regression, (2) XGBoost, and (3) a deep learning architecture that included a 1-dimensional convolutional neural network (1D-CNN) and stacked autoencoders. Model input features included demographics and only the nonophthalmic lab results, measurements, medications, and diagnoses available from structured EHR data.

Main Outcome Measures: Evaluation metrics included area under the receiver operating characteristic curve (AUROC).

Results: Of 64 735 patients, 7268 (11.22%) had a glaucoma diagnosis. Overall, AUROC ranged from 0.796 to 0.863. The 1D-CNN model achieved the highest performance with an AUROC score of 0.863 (95% confidence interval [CI], 0.862-0.864). Investigation of 1D-CNN model performance stratified by race/ethnicity showed that AUROC ranged from 0.825 to 0.869 by subpopulation, with the highest performance of 0.869 (95% CI, 0.868-0.870) among the non-Hispanic White subpopulation.

Conclusions: Machine and deep learning models were able to use the extensive systematic data within EHR to identify individuals with glaucoma, without the need for ophthalmic imaging or clinical data. These models could potentially automate identifying high-risk glaucoma patients in EHRs, aiding targeted screening referrals. Additional research is needed to investigate the impact of protected class characteristics such as race/ethnicity on model performance and fairness.

Financial Disclosures: The author(s) have no proprietary or commercial interest in any materials discussed in this article.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11930135PMC
http://dx.doi.org/10.1016/j.xops.2024.100671DOI Listing

Publication Analysis

Top Keywords

artificial intelligence
8
intelligence models
8
identify patients
8
patients high
8
high probability
8
electronic health
8
health records
8
ophthalmic imaging
8
imaging clinical
8
deep learning
8

Similar Publications

Cognitive impairment and dementia, including Alzheimer's disease (AD), pose a global health crisis, necessitating non-invasive biomarkers for early detection. This review highlights the retina, an accessible extension of the central nervous system (CNS), as a window to cerebral pathology through structural, functional, and molecular alterations. By synthesizing interdisciplinary evidence, we identify retinal biomarkers as promising tools for early diagnosis and risk stratification.

View Article and Find Full Text PDF

Introduction: Vision language models (VLMs) combine image analysis capabilities with large language models (LLMs). Because of their multimodal capabilities, VLMs offer a clinical advantage over image classification models for the diagnosis of optic disc swelling by allowing a consideration of clinical context. In this study, we compare the performance of non-specialty-trained VLMs with different prompts in the classification of optic disc swelling on fundus photographs.

View Article and Find Full Text PDF

Artificial intelligence (AI) is a technique or tool to simulate or emulate human "intelligence." Precision medicine or precision histology refers to the subpopulation-tailored diagnosis, therapeutics, and management of diseases with its sociocultural, behavioral, genomic, transcriptomic, and pharmaco-omic implications. The modern decade experiences a quantum leap in AI-based models in various aspects of daily routines including practice of precision medicine and histology.

View Article and Find Full Text PDF

Immunotherapies for Aging and Age-Related Diseases: Advances, Pitfalls, and Prospects.

Research (Wash D C)

September 2025

NHC Key Laboratory of Tropical Disease Control, School of Life Sciences and Medical Technology, Hainan Medical University, Haikou, Hainan 571199, China.

Aging is characterized by a gradual decline in the functionality of all the organs and tissues, leading to various diseases. As the global population ages, the urgency to develop effective anti-aging strategies becomes increasingly critical due to the growing severity of associated health problems. Immunotherapy offers novel and promising approaches to combat aging by utilizing approaches including vaccines, antibodies, and cytokines to target specific aging-related molecules and pathways.

View Article and Find Full Text PDF

Deep learning has rapidly emerged as a promising toolkit for protein optimization, yet its success remains limited, particularly in the realm of activity. Moreover, most algorithms lack rigorous iterative evaluation, a crucial aspect of protein engineering exemplified by classical directed evolution. This study introduces DeepDE, a robust iterative deep learning-guided algorithm leveraging triple mutants as building blocks and a compact library of ∼1,000 mutants for training.

View Article and Find Full Text PDF