98%
921
2 minutes
20
Resistance to poly-(ADP)-ribose polymerase inhibitors (PARPi) remains a significant challenge in clinical practice, leading to treatment failure in many patients. It is crucial to better understand the molecular mechanisms that underlie PARPi resistance. In this study, utilizing a genome-wide CRISPR activation screen with olaparib, we identified ARL11 as a potential modulator of PARPi treatment response in BRCA-wild-type MDA-MB-231 cells. Mechanistically, ARL11 interacts with STING to enhance innate immunity and forms positive feedback with type I interferon (IFN) induction, which induces ARL11 up-regulation and contributes to resistance to PARPi therapy. Additionally, we observed that ARL11 interacts with the RUVBL1 and RUVBL2 (RUVBL1/2) complex, the key DNA double-strand repair proteins, facilitating DNA homologous recombination (HR) repair and significantly reducing PARPi-induced DNA double-strand damages. Clinical sample analysis reveals that the expression levels of ARL11 and RUVBL1/2 are significantly elevated in breast cancer patients compared to healthy controls. Collectively, our findings suggested that ARL11 and RUVBL1/2 may be promising therapeutic targets to sensitize breast cancer cells to PARPi therapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41417-025-00893-w | DOI Listing |
Plant Mol Biol
September 2025
Institute of Biological Chemistry, The Washington State University, Pullman, WA, 99164, USA.
Legumes are essential for agriculture and food security. Biotic and abiotic stresses pose significant challenges to legume production, lowering productivity levels. Most legumes must be genetically improved by introducing alleles that give pest and disease resistance, abiotic stress adaptability, and high yield potential.
View Article and Find Full Text PDFJ Bacteriol
September 2025
Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA.
Essential genes are interesting in their own right and as potential antibiotic targets. To date, only one report has identified essential genes on a genome-wide scale in , a problematic pathogen for which treatment options are limited. That foundational study used large-scale transposon mutagenesis to identify 404 protein-encoding genes as likely to be essential for vegetative growth of the epidemic strain R20291.
View Article and Find Full Text PDFAdv Sci (Weinh)
September 2025
China-New Zealand Joint Laboratory on Biomedicine and Health, State Key Laboratory of Immune Response and Immunotherapy, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Resea
TP53 mutations are highly associated with hepatocellular carcinoma (HCC), a common and deadly cancer. However, few primary drivers in the progression of HCC with mutant TP53 have been identified. To uncover tumor suppressors in human HCC, a genome-wide CRISPR/Cas9-based screening of primary human hepatocytes with MYC and TP53 overexpression (MT-PHHs) is performed in xenografts.
View Article and Find Full Text PDFMicrobiol Spectr
September 2025
Shanghai Public Health Clinical Center & Institutes of Biomedical Science, Shanghai Medical College, Fudan University, Shanghai, China.
Influenza A virus (IAV) relies on the host cellular machinery to support its replication. Understanding these host dependencies can inform the development of novel antiviral strategies. In this study, we identified conserved oligomeric Golgi complex subunit 6 (COG6) as a novel host factor critical for IAV replication through a genome-wide clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) knockout screen.
View Article and Find Full Text PDFA longstanding barrier in genome engineering with CRISPR-Cas9 has been the inability to measure Cas9 edit outcomes and their functional effects at single-cell resolution. Here we present Superb-seq, a new technology that leverages T7 transcription and single-cell RNA sequencing to jointly measure on- and off-target Cas9 edits and their effects on gene expression. We performed Superb-seq on 10,000 K562 cells, targeting four chromatin remodeler genes with seven guide RNAs.
View Article and Find Full Text PDF