Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Heterozygous mutations in the Bone morphogenetic protein (BMP) type I receptor ACVR1, encoding activin-like kinase 2 (ALK2), underlie all cases of the rare genetic musculoskeletal disorder Fibrodysplasia Ossificans Progressiva (FOP). The most commonly found mutant ALK2 p.R206H receptor variant exhibits loss of auto inhibition of BMP signaling and can be activated by Activins, while wild-type receptors remain unresponsive. Consequently, the downstream chondrogenic signaling is enhanced, thus driving heterotopic ossification within soft connective tissues. Despite several investigational treatments being evaluated in clinical trials, no cure for FOP exists today. The cellular and molecular mechanisms underlying disease progression are still being deciphered. In this study, we show a close interplay between the mutant ALK2 receptor signaling and dysregulation of the autophagic flux triggered by hypoxia. Mechanistically, reduced autophagic flux correlates with increased stability of ALK2, resulting in sustained signaling. Of note, we demonstrated that Rapamycin, under clinical investigation as a treatment for FOP, inhibits chondrogenic differentiation in an autophagy-dependent manner. Consistently, other pharmacological autophagy inducers, like Spermidine, can reduce ALK2 driven chondrogenic differentiation in vitro. These results were verified in FOP patient-derived cells. In conclusion, this study shows that aberrant autophagic flux mediates sustained ALK2 signaling, introducing a novel druggable target in FOP by reactivating autophagy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11929866PMC
http://dx.doi.org/10.1038/s41420-025-02393-0DOI Listing

Publication Analysis

Top Keywords

autophagic flux
12
mutant alk2
8
chondrogenic differentiation
8
signaling
6
alk2
6
receptor
5
fop
5
interplay alk2
4
alk2 mutant
4
mutant receptor
4

Similar Publications

Leber's hereditary optic neuropathy (LHON), a mitochondrial disorder marked by central vision loss, exhibits incomplete penetrance and male predominance. Since there are no adequate models for understanding the rapid vision loss associated with LHON, we generated induced pluripotent stem cells (iPSCs) from LHON patients carrying the pathogenic m.3635G > A mutation and differentiated them into retinal pigment epithelium (RPE) cells.

View Article and Find Full Text PDF

Targeting the IRS1 macromolecular signaling node by Trienomycin a triggers cytoprotective autophagy in pancreatic adenocarcinoma.

Int J Biol Macromol

September 2025

Shaanxi Key Laboratory of Natural Products and Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Xianyang, China. Electronic address:

Pancreatic adenocarcinoma (PAAD) lacks effective therapies due to complex macromolecular signaling networks. Here, we identified the natural compound Trienomycin A (TA) as a potent binder and degrader of the key signaling adaptor protein Insulin Receptor Substrate 1 (IRS1), disrupting its macromolecular assembly in insulin-like growth pathways. Through integrated biochemical, cellular, and in vivo analyses, we demonstrated that TA directly bound the phosphotyrosine-binding (PTB) domain of IRS1, inducing proteasomal degradation of this critical macromolecular hub mediated by the E3 ubiquitin ligase FBXW8.

View Article and Find Full Text PDF

T-type calcium channels are pivotal in spermatogenesis. To evaluate the molecular mechanisms by which T-type calcium channels regulate spermatogenesis, we constructed animal and cellular models using T-type calcium channel inhibitor flunarizine (FNZ). Intraperitoneal administration of FNZ (30mg/kg) significantly impaired sperm motility, inhibited testicular germ cell proliferation, and disrupted sperm mitochondrial function in male mice.

View Article and Find Full Text PDF

Bovine coronavirus Nsp14 protein promotes viral replication by degrading TRAF3 to inhibit interferon production.

Vet Microbiol

September 2025

Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China; Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai 200240, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou Unive

Bovine coronavirus (BCoV), a member of the Betacoronavirus genus, causes severe calf gastroenteritis and respiratory disease, resulting in a significant loss of livestock. Coronavirus non-structural protein 14 (nsp14) is involved in viral RNA replication and modification and subverts host immune regulatory pathways to facilitate immune evasion. In this study, we demonstrated that BCoV nsp14 mediates TNF receptor-associated factor 3 (TRAF3) degradation through the coordinated targeting of the ubiquitin-proteasome and autophagy-lysosomal pathways, thereby potentiating viral replication.

View Article and Find Full Text PDF

Bacoside A (BCA), a triterpenoid saponin isolated from Bacopa monnieri, exhibits diverse pharmacological properties, including neuroprotective, hepatoprotective, anti-stress, anti-inflammatory, and anti-ulcer effects. In the present study, BCA demonstrates pronounced anticancer activity against K562 chronic myelogenous leukemia (CML) cells by modulating autophagy-apoptosis dynamics. BCA induces dose- and time-dependent cytotoxicity in K562 cells while sparing normal human peripheral blood mononuclear cells (hPBMCs) and Vero cells, indicating therapeutic selectivity.

View Article and Find Full Text PDF