Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Clean Air Actions were implemented in China in 2013 to reduce air pollutants in the atmosphere through stringent emission controls. Alkylated polycyclic aromatic hydrocarbons (Alk-PAHs), which are derivatives of polycyclic aromatic hydrocarbons, are highly toxic, and their levels have been affected after the implementation. This study-conducted in Harbin, a northeastern Chinese city-investigated the policy's impact by analyzing temporal variations in the concentrations of gaseous and particulate Alk-PAHs from 2014 to 2019. The major air-pollutant data were obtained from the China National Environmental Monitoring Center Network. The measured concentrations of Alk-PAHs in the atmosphere exhibited a significant decreasing trend, with a halving time of 2.67 ± 0.63 years. Meanwhile, the cancer risk (CR) associated with inhalation and dermal exposure demonstrated a halving time of 1.80 ± 0.49 years. Despite the declining trends in the CR associated with inhalation and dermal exposure across three age groups (children, adolescents, and adults), adolescents showed a potential CR. Furthermore, by differentiating the effects of meteorological factors and anthropogenic emission control measures on the decreasing concentrations of ∑Alk-PAHs and total benz[a]pyrene equivalent concentration (∑BaP), 64 % of the reduction in the concentration of ∑Alk-PAHs and 87 % of the decline in ∑BaP was attributed to anthropogenic emission control measures. Therefore, we can deduce that the implementation of Clean Air Actions not only decreased the concentrations of primary air pollutants, such as PM particles, PM particles, sulfur dioxide, nitrogen oxides, and carbon monoxide but also decreased the concentration of atmospheric Alk-PAHs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envpol.2025.126098 | DOI Listing |