Natural products targeting regulated cell deaths for adriamycin-induced cardiotoxicity.

Cell Death Discov

Xijing Hypertrophic Cardiomyopathy Center, Department of Ultrasound, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an, 710032, China.

Published: March 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Adriamycin (ADR), as an anti-cancer drug in routine clinical application, is utilized to treat various cancers such as ovarian cancer, hematological malignant tumor, and endometrial carcinoma. However, its serious dose-dependent cardiotoxicity extremely limits its clinical application. Currently, there remains a dearth of therapeutic agents to mitigate ADR-induced cardiotoxicity. Extensive research has demonstrated that ADR can simultaneously trigger various regulated cell death (RCD) pathways, such as apoptosis, autophagy, ferroptosis, necroptosis, and pyroptosis. Therefore, drugs targeting these RCD pathways may represent effective strategies for treating ADR-induced cardiotoxicity. Natural products, with their wide availability, low cost, and diverse pharmacological activities, have increasingly gained attention. Various natural products, including polyphenols, flavonoids, terpenoids, and alkaloids, can target the RCD pathways involved in ADR-induced cardiotoxicity. Furthermore, these natural products have exhibited excellent properties in preclinical studies or in vitro experiments. This review summarizes the mechanisms of RCD in ADR-induced cardiotoxicity and systematically reviews the natural products targeting these RCD pathways. Finally, we propose future research directions of natural products in this field.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11928682PMC
http://dx.doi.org/10.1038/s41420-025-02389-wDOI Listing

Publication Analysis

Top Keywords

natural products
24
adr-induced cardiotoxicity
16
rcd pathways
16
products targeting
8
regulated cell
8
clinical application
8
targeting rcd
8
cardiotoxicity natural
8
natural
6
cardiotoxicity
6

Similar Publications

Indole-based natural product for plant protection: Discovery of alkaloid barrettin and its derivatives as novel antiviral and antifungal agents.

Pestic Biochem Physiol

November 2025

Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China. Electronic address:

The extensive use of highly toxic and residual pesticides has a significant negative impact on agricultural production and the ecological environment. The development of new green antiviral agents has become a major demand for ensuring the development of green ecological agriculture. Indole alkaloids are widely present in nature and have diverse biological activities.

View Article and Find Full Text PDF

Applying natural product repurposing strategy to identify baicalein as novel caseinolytic protease P inhibitor and its application in the treatment of rice bacterial diseases.

Pestic Biochem Physiol

November 2025

State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China. Electronic address:

Plant diseases caused by bacteria affect the yield of crop, greatly reduce the quality of food, and thus posing a great threat to food safety. To fill the gap that no report about ClpP inhibitor is applied in agri-food production field, engineering natural-product repurposing strategy, 55 of natural products were screened using the combination of ClpP inhibitors of Xanthomonas oryzae pv. oryzae (Xoo) screening assay and anti-Xoo activity experiment.

View Article and Find Full Text PDF

RNA interference (RNAi) is an endogenous eukaryote viral defence mechanism representing a unique form of post-transcriptional gene silencing that can be induced via the exongenous application of dsRNA. Due to its high specificity, dsRNA-based biopesticides are being developed to control pest insects. Whilst many lepidopteran species are recalcitrant to RNAi, Tuta absoluta, a polyphagous insect responsible for extensive crop damage, is sensitive.

View Article and Find Full Text PDF

Mortierella alpina bioinoculant potentiates native microbiota for soil borne disease suppression in Panax notoginseng cultivation.

Pestic Biochem Physiol

November 2025

State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China; Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, College of Plant Protection, Yunnan Agricultural University, Kunming, China. Electronic ad

Mortierella spp. is emerging as a potential biocontrol agent against soil borne diseases due to its antagonistic effects on pathogens and strong environmental adaptability. However, the mechanisms by which it restructures rhizosphere microbial communities to achieve sustained pathogen suppression remain largely unresolved.

View Article and Find Full Text PDF

Genistein: A promising botanical fungicide candidate for enhancing tomato yield and quality by controlling Alternaria solani.

Pestic Biochem Physiol

November 2025

State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China. Electronic address:

The overreliance on traditional chemical fungicides, combined with the emergence of resistance, poses significant challenges for food safety. Early blight, caused by the fungal pathogen Alternaria solani (A. solani), is among the most significant contributors to pre- and postharvest yield losses in tomato cultivation.

View Article and Find Full Text PDF