98%
921
2 minutes
20
The amygdala exhibits distinct different activity patterns to threat and safety stimuli. Animal studies have demonstrated that the fear (i.e., threat) and extinction (i.e., safety) memory are encoded by the amygdala and its interaction with the ventromedial prefrontal cortex (vmPFC). Recent studies in both animals and humans suggest that the inter-regional interaction between amygdala and vmPFC can be supported by theta oscillations during fear processing. However, the mechanism by which the human vmPFC-amygdala pathway dynamically supports neural representations of the same stimulus remains elusive, as it alternatively reflects threat and safety situations. To investigate this phenomenon, we conducted intracranial EEG recordings in drug-resistant epilepsy patients (n = 8) with implanted depth electrodes who performed a fear conditioning and extinction task. This task was designed with a fixed structure whereby specific CS+ stimulus could be either safe (never paired with US) or threatening (possibly paired with US) based on an implicit rule during fear acquisition. Our findings showed that the stimulus embodying potential threat information was accompanied by increased theta activities in amygdala during both fear acquisition and early extinction. Furthermore, the learning of safety information was associated with enhanced theta-related direction from the vmPFC to the amygdala. This study provided directly electrophysiological evidence supporting the dynamic oscillatory modulation of threat and safety representations in the human amygdala-vmPFC circuit, and suggests that amygdala safety processing depends on theta inputs from the vmPFC in both fear acquisition and extinction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuroimage.2025.121164 | DOI Listing |
Risk Anal
September 2025
School of Public Policy and Administration, Chongqing University, Chongqing, China.
Climate change is causing a significant increase in the number of compound extreme events that pose significantly greater threats to public safety. Chongqing is a megacity in southwestern China that took the brunt of temporally compounding events (TCEs) in the summer of 2022. We developed an approach based on the Intergovernmental Panel on Climate Change (IPCC) risk framework to assess the public health risks posed by TCEs.
View Article and Find Full Text PDFObjectives: Cervical cancer is a serious threat to women's life and health and has a high mortality rate. Colposcopy is an important method for early clinical cervical cancer screening, but the traditional vaginal dilator has problems such as discomfort in use and cumbersome operation. For this reason, this study aims to design an intelligent vaginal dilatation system to automate colposcopy and enhance patient comfort.
View Article and Find Full Text PDFAerosp Med Hum Perform
September 2025
Introduction: This study investigated pilot cognitive engagement patterns across diverse flight conditions using electroencephalography (EEG)-based measurements in a high-fidelity rotary-wing simulation environment.
Methods: A total of 8 experienced U.S.
Steroids
September 2025
Department of Chemical Sciences, University of Naples Federico II, Naples I-80126, Italy.
Antimicrobial resistance is currently one of the most serious and alarming threats to human health; therefore, the identification of novel antimicrobial agents is a compelling need. Recently, we identified the heterocyclic steroid PYED-1 as a novel promising antibacterial and antibiofilm agent. In an effort to broaden the repertoire of active compounds and elucidate the structural features responsible for their antibacterial activity, two novel derivatives of PYED-1 have been conceived herein.
View Article and Find Full Text PDFJ Environ Manage
September 2025
Zhejiang Collaborative Innovation Center for Full-Process Monitoring and Green Governance of Emerging Contaminants, Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou, 310015, China. Electr
The widespread coexistence of chiral herbicides and heavy metals (HMs) in agricultural soils poses significant ecological risks to crop safety, yet their combined ecotoxicological effects are not well understood. This study systematically investigated the enantiomer-specific effects of napropamide (R/S-NAP) on plant HMs accumulation. Results showed that S-NAP application reduced plant biomass and HMs accumulation, while R-NAP exhibited distinct effects, increasing root biomass and HMs accumulation in roots.
View Article and Find Full Text PDF