Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Halide ions in oceans and sea-spray aerosol particles are an important source of reactive halogen species in the atmosphere that impact the ozone budget and radiative balance. The multiphase cycling of halogen species is linked to the abundance of halide ions at the aqueous solution-air interface. Ubiquitously present surface-active organic compounds may affect the interfacial abundance of halide ions. Here, we use liquid jet X-ray photoelectron spectroscopy and molecular dynamics (MD) simulations to assess the impact of surfactants with different headgroups on the abundance of bromide and sodium ions at the interface. Core level spectra of Br 3d, Na 2s, and O 1s are reported for solutions containing tetrabutylammonium, hexylamine (HA), and propyl sulfate. We used a photoelectron attenuation model to retrieve the interfacial concentration of bromide in the presence of these different surfactants. The experimental results confirm the previously reported strong enhancement of bromide in the presence of tetrabutylammonium at the interface. In turn, propyl sulfate had a minor impact on the abundance of bromide but led to a significantly enhanced concentration of sodium cations. The MD simulations performed for bromide solutions containing hexylammonium and propyl sulfate show an enhancement of the interfacial bromide and sodium concentrations, respectively, comparable to the experimental results. The difference between the measured enhancement of bromide for HA and the nearly nonexistent effect of HA on bromide in the MD simulations is ascribed to the small amounts of hexylammonium present in the experimental solution. The present work suggests an important role of electrostatic interactions at the interface, which may guide the assessment of anion and cation abundances in atmospheric particles more generally.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11973919PMC
http://dx.doi.org/10.1021/acs.jpca.4c07539DOI Listing

Publication Analysis

Top Keywords

halide ions
12
propyl sulfate
12
bromide
9
halogen species
8
abundance halide
8
abundance bromide
8
bromide sodium
8
bromide presence
8
enhancement bromide
8
influence surfactants
4

Similar Publications

Levetiracetam-Assisted Perovskite Crystallization and Tripartite Lead Iodide Reduction in Perovskite Solar Cells.

Adv Mater

September 2025

Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, 430072, China.

Sequential deposition technique is widely used to fabricate perovskite films with large grain size in perovskite solar cells (PSCs). Residual lead halide (PbI) in the perovskite film tends to be decomposed into metallic lead (Pb) under long-term heating or light soaking. Here, a chiral levetiracetam (LEV) dopant containing α-amide and pyrrolidone groups is introduced into the PbI precursor solution.

View Article and Find Full Text PDF

The reaction of -pentyl-morpholine with benzyl chloride resulted in the title compound, CHClNO, which crystallizes in the ortho-rhom-bic space group 2 with = 4. In the crystal, the chloride ions are surrounded by four cations, forming layers.

View Article and Find Full Text PDF

Inorganic halide perovskites have been the subject of intensive research for their unique properties. Most current research focuses on halide ion exchange to modify the luminescence band gap and optical features. They are obtained mainly in colloids or thin layers, resulting in small grains with a narrow distribution.

View Article and Find Full Text PDF

Phase segregation remains one of the most critical challenges limiting the performance and long-term operational stability of wide-bandgap perovskite solar cells (PSCs). This issue is especially pronounced in 1.84 eV wide-bandgap (WBG) perovskites, where severe halide phase segregation leads to compositional heterogeneity and accelerated device degradation.

View Article and Find Full Text PDF

Organic-inorganic hybrid thiocyanates include a variety of compositions and structure types. To develop a better understanding of the interactions that control the crystal structure in this family of materials, six hybrid thiocyanate halide compounds with the general formula ACd(SCN)X (A = CHNH, CHCHNH, CH(CH)NH, CH(CH)NH; X = Cl, Br) have been synthesized. Single crystal X-ray diffraction shows that five of the six compounds crystallize with triclinic 1̅ symmetry, the lone exception being (CH(CH)NH)Cd(SCN)Cl which adopts 2/ symmetry.

View Article and Find Full Text PDF