98%
921
2 minutes
20
Due to the widespread application of new technologies such as increased production and injection, the output of many old wells has improved, but this has also led to varying degrees of sand production. Increased sand production has affected oil well production, increased equipment wear, wellbore plugging, and safety risks. To increase the sand particle transport performance within wellbores, indoor experiments have been conducted to study the sand transport characteristics, transformation relationships, and critical flow velocities for fluid carrying sand. The experimental results indicate that sand particle transport within wellbores can be classified into four modes: stationary, rolling, skipping, and suspended. The flow pattern characteristics of the sand particles were further subdivided into eight categories, and the transformation relationships between these flow patterns were established. Experiments on the critical flow velocities for different grain sizes of sand in inclined wellbores have shown that the fluid velocity required for lifting sand particles is greater than that for rolling and sliding. When the wellbore inclination angle is greater than or equal to 70°, the fluid velocity required for lifting sand particles is approximately 1.9 times greater than that for rolling, and the rolling velocity is approximately 1.6 times greater than that for sliding. In vertical wellbores, the critical velocity for the sand particle suspension is approximately 0.81 times the terminal settling velocity of the sand particles in water. This research provides important scientific evidence for improving and optimizing sand removal techniques in oil wells, as well as a systematic approach and experimental foundation for further studies on sand transport in complex wellbores.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11926375 | PMC |
http://dx.doi.org/10.1038/s41598-025-87386-w | DOI Listing |
J Am Chem Soc
September 2025
Department of Chemistry, Northwestern University Evanston, Illinois 60208, United States.
Per- and polyfluoroalkyl substances (PFASs) are environmentally persistent, bioaccumulative, and toxic chemicals that contaminate global drinking water resources. Their ubiquity and potential impact on human health motivate large-scale remediation. Conventional materials used to remove PFASs during drinking water production are functionally inefficient or energetically expensive, motivating the discovery of new materials and technologies.
View Article and Find Full Text PDFEnviron Res
September 2025
Advanced Institute of Information Technology, Peking University, Hangzhou 311215, China; National Institute of Health Data Science, Peking University, Beijing 100191, China; Renal Division, Department of Medicine, Peking University First Hospital; Peking University Institute of Nephrology, Beijing 1
Objective: The impact of desert-originated dust has been underestimated in fine particulate matters (PM)-related disease burden studies. This study aimed to assess the association of long-term dust PM exposure and all-cause mortality among older adults in China.
Methods: A cohort study using electronic health records (2010-2020) across Weinan, a city in northwest China, which experiences persistently high PM levels and frequent sand and dust storms, included 1,553,724 adults aged ≥45 years.
Struct Dyn
July 2025
Cornell Laboratory for Accelerator-Based Sciences and Education, Cornell University, Ithaca, New York 14853, USA.
Cryo-electron tomography (cryo-ET) is a powerful modality for resolving cellular structures in their native state. While single-particle cryo-electron microscopy excels in determining protein structures purified from recombinant or endogenous sources due to an abundance of particles, weak contrast issues are accentuated in cryo-ET by low copy numbers in crowded cellular milieux. Continuous laser phase plates offer improved contrast in cryo-ET; however, their implementation demands exceptionally high-peak optical intensities.
View Article and Find Full Text PDFProtoplasma
September 2025
Department of Molecular Biology, Ariel University, Ariel, Israel.
Sands are a harsh habitat with limited water and nutrients, and danger of burial or mechanical injury by moving particles. Sand entrapping plants (psammophytes) actively fix sand on their surfaces, which presumably offers adaptive benefits, such as mechanical protection and camouflage. This short article deals with the structural-functional aspects of sand-trapping in the annual psammophyte Ifloga spicata (Asteraceae).
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
August 2025
Civil Engineering Department, Federal Rural University of Pernambuco, Recife, Pernambuco, 50740-530, Brazil.
In recent years, the use of supplementary cementitious materials (SCMs) in building materials has increased due to concerns about CO emissions from the cement industry. On the other hand, the scarcity of traditional sources of SCMs in certain regions exacerbates the issue of high demand for these materials in concrete production. In this context, this article explores the chemical, mineralogical, morphological, and physical properties and pozzolanic activity of two types of diatomaceous earth (DE) obtained from industrial waste and by-products.
View Article and Find Full Text PDF