98%
921
2 minutes
20
Crop breeding plays an essential role in addressing food security by enhancing crop yield, disease resistance and nutritional value. However, the current crop breeding process faces multiple challenges and limitations, especially in genotypic evaluations. Traditional methods for seed genotyping remain labour-intensive, time-consuming and cost-prohibitive outside of large-scale breeding programs. Here, we present a handheld microneedle (MN)-based seed DNA extraction platform for rapid, non-destructive and in-field DNA isolation from crop seeds for instant marker analysis. Using soybean seeds as a case study, we demonstrated the use of polyvinyl alcohol (PVA) MN patches for the successful extraction of DNA from softened soybean seeds. This extraction technology maintained high seed viability, showing germination rates of 82% and 79%, respectively, before and after MN sampling. The quality of MN-extracted DNA was sufficient for various genomic analyses, including PCR, LAMP and whole-genome sequencing. Importantly, this MN patch method also allowed for the identification of specific genetic differences between soybean varieties. Additionally, we designed a 3D-printed extraction device, which enabled multiplexed seed DNA extraction in a microplate format. In the future, this method could be applied at scale and in-field for crop seed DNA extraction and genotyping analysis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12120874 | PMC |
http://dx.doi.org/10.1111/pbi.70055 | DOI Listing |
Proc Natl Acad Sci U S A
September 2025
Martin A. Fisher School of Physics, Brandeis University, Waltham, MA 02453.
Programmable self-assembly has recently enabled the creation of complex structures through precise control of the interparticle interactions and the particle geometries. Targeting ever more structurally complex, dynamic, and functional assemblies necessitates going beyond the design of the structure itself, to the measurement and control of the local flexibility of the intersubunit connections and its impact on the collective mechanics of the entire assembly. In this study, we demonstrate a method to infer the mechanical properties of multisubunit assemblies using cryogenic electron microscopy (cryo-EM) and RELION's multi-body refinement.
View Article and Find Full Text PDFMikrochim Acta
September 2025
Department of Public Health Laboratory Sciences, College of Public Health, Hengyang Medical School, University of South China, 28 Changsheng West Road, Hengyang, 421001, Hunan, China.
We systematically evaluated the DNA adsorption and desorption efficiencies of several nanoparticles. Among them, titanium dioxide (TiO₂) nanoparticles (NPs), aluminum oxide (Al₂O₃) NPs, and zinc oxide (ZnO) NPs exhibited strong DNA-binding capacities under mild conditions. However, phosphate-mediated DNA displacement efficiencies varied considerably, with only TiO₂ NPs showing consistently superior performance.
View Article and Find Full Text PDFCurr Microbiol
September 2025
Microbiology Laboratory, Department of Life Science, Kyonggi University, Suwon, Gyeonggi-Do, Republic of Korea.
A yellow-pigmented, non-motile, rod-shaped, and Gram-stain-negative bacterium was isolated from the soil of Yeongheung Island, Korea. The novel isolate, strain N803, was strictly aerobic, grew optimally at 30-35 °C, at pH 6.5, and in the presence of 0-2% NaCl.
View Article and Find Full Text PDFInt J Environ Health Res
September 2025
Department of Epidemiology, School of Public Health, Shanxi Medical University, Jinzhong, China.
The mechanism underlying the effects of Polycyclic aromatic hydrocarbons (PAHs) on missed abortion (MA) remains unclear. This study explored the relationship between PAHs exposure, telomere length (TL), metabolizing enzyme gene polymorphism, and MA in a case-control study with 253 pregnant women. A competitive enzyme-linked immunosorbent assay (ELISA) was used to quantify PAH-DNA adducts.
View Article and Find Full Text PDFBackground: To improve the molecular diagnostic yield for Aspergillus spp. from respiratory samples, we developed and evaluated a new DNA extraction method directly from respiratory samples combined with in-house Aspergillus real-time PCR.
Methods: We developed a method using beads and resin, where a sample is centrifuged to separate the supernatant and pellet.