Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Passivation of magnesium (Mg) anode in the chloride-free magnesium bis(trifluoromethanesulfonyl)imide (Mg(TFSI)) electrolyte is a key challenge for Mg metal batteries. Tailoring solvation structure and solid electrolyte interphase (SEI) has been considered an effective strategy. Herein, a series of imidazole co-solvents with different branched-chain structures (methyl, ethyl, and propyl) are introduced into the Mg(TFSI)-ether electrolyte to address the passivation issue. The ion-solvent interaction, interfacial adsorption effect, and SEI formation are comprehensively studied by theoretical calculations and experimental characterizations. Through molecular structure analysis, the long-chain 1-propylimidazole (PrIm) exhibits a strong coordination ability to Mg and a favorable parallel adsorption configuration on the Mg surface. As a result, PrIm co-solvent can not only restructure the solvation sheath of Mg, but also act as a dynamic protective shield to repel a part of TFSI and 1,2-dimethoxyethane (DME) away from the Mg surface. Benefiting from the synergistic regulation effect of interfacial chemistry and ion-solvent interactions, the chloride-free Mg(TFSI)-DME + PrIm electrolyte ensures minimal interface passivation and achieves highly reversible Mg plating/stripping. This work provides a guiding strategy for solvation structure regulation and interface engineering for rechargeable Mg metal batteries.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202424237DOI Listing

Publication Analysis

Top Keywords

interfacial chemistry
8
chemistry ion-solvent
8
ion-solvent interactions
8
anode chloride-free
8
metal batteries
8
solvation structure
8
synergistic effects
4
effects interfacial
4
interactions enable
4
enable reversible
4

Similar Publications

Interstitial Iodine Induced Deep-Trap-Pinning Suppresses Self-Healing at the TiO/Perovskite Interface.

J Phys Chem Lett

September 2025

Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87106, United States.

Defects significantly influence charge transport in CHNHPbI (MAPbI) perovskite solar cells, particularly at interfaces. Using quantum dynamics simulation, we reveal a distinct interstitial iodine (I) defect behavior at different positions in the TiO/MAPbI system. In the perovskite bulk-like region, I exhibits high mobility and dissociates detrimental iodine trimers, facilitating small-to-large polaron transition and promoting shallow trap formation.

View Article and Find Full Text PDF

This study presents a novel carbazole derivative functionalized with hydroxy diphosphonic acid groups (HDPACz) as an efficient annealing-free hole transport layer (HTL) through strong bidentate anchoring to indium tin oxide (ITO). Compared to conventional mono-phosphonic acid counterparts, HDPACz demonstrates superior ITO surface coverage and interfacial dipole, effectively modulating the work function of ITO. Theoretical calculations reveal enhanced adsorption energy (-3.

View Article and Find Full Text PDF

Solar-Enhanced Blue Energy Conversion via Photo-electric/thermal in GO/MoS/CNC Nanofluidic Membranes.

Small

September 2025

Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, P. R. China.

In recent years, light-controlled ion transport systems have attracted widespread attention, however, the use of photoresponsive materials suffers from rapid carrier recombination, thermal field limitations, and narrow spectral response, which significantly restricts their performance enhancement in osmotic energy conversion. This study innovatively couples "blue energy" (osmotic energy) with "green energy" (solar energy), assembling graphene oxide/molybdenum disulfide/sulfonated cellulose nanocrystal (GO/ MoS/CNC) ion-channel membranes. Under solar irradiation, the energy level difference between MoS and GO effectively suppresses the recombination of photogenerated carriers, generating more active electrons and significantly enhancing the carrier density, thereby improving the current flux and ion selectivity.

View Article and Find Full Text PDF

Approach to Evaluating Reorganization Energies of Interfacial Electrochemical Reactions.

ACS Electrochem

September 2025

Liquid Sunlight Alliance, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.

Reaction rate coefficients for electron-transfer processes at the electrode-electrolyte interface are commonly estimated by using the Butler-Volmer equation, but their values are inaccurate beyond a few tenths of volts of overpotential. The Marcus-Hush-Chidsey (MHC) formalism yields correct asymptotic behavior of the rate coefficients vs applied overpotential but has complex dependencies on the redox system's intrinsic parameters, which can be difficult to model or measure. In this work, we bridge the two kinetics formalisms to estimate the reorganization energy, one of the important parameters for the MHC formalism, and investigate its dependence on other intrinsic parameters such as activation barriers, electronic coupling strength, and the density of states of the electrode surface.

View Article and Find Full Text PDF

The stress distribution in Li metal strongly affects the interfacial Li-ion diffusion, thereby influencing the morphology of plated Li and the performance of the battery. Here, we report a mechano-electrochemical coupling strategy that utilizes an arched structured carbon aerogel to achieve stable Li-plating/stripping electrochemistry. The arch-structured carbon aerogel can actively regulate stress distributions in response to the compressive stresses induced by Li deposition, generating the transition of stress from compressive on the convex surface to tensile on the concave surface, which can effectively promote the Li-migration kinetics and thus suppress the non-uniform deposition of Li.

View Article and Find Full Text PDF