98%
921
2 minutes
20
High-efficiency production of triplet states in covalent organic framework photocatalysts is crucial for high-selectivity oxygen (O) reduction to hydrogen peroxide (HO). Herein, fluorine and partial fluorine atoms are incorporated into an olefin-linked triazine covalent organic framework (F-ol-COF and HF-ol-COF), in which the adjacent fluorine (F) atoms-olefinic bond forms p-π conjugation that induces spin-polarization under irradiation, thus expediting triplet excitons for activating O to singlet oxygen (O) and contributing to a high HO selectivity (91%). Additionally, the feasibility of coupling HO production with the valorization of 5-hydroxymethylfurfural (HMF) is exhibited. The F-ol-COF demonstrates a highly stable HO yield rate of 12558 µmol g h with the HMF-to-functionalized furan conversion yield of 95%, much higher than the partially fluorinated COF (HF-ol-COF) and the non-fluorinated COF (H-ol-COF). Mechanistic studies reveal that F-incorporation promotes charge separation, intensifies the Lewis acidity of the carbon atoms on the olefinic bond as active sites for O adsorption, and provides highly concentrated holes at the triazine unit for HMF oxidation upgrading. This study suggests the attractive potential of rational design of porous-crystalline photocatalysts for high-efficiency photocatalytic O reduction to HO and biomass upgrading.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.202502220 | DOI Listing |
J Am Chem Soc
September 2025
Nanochemistry Department, Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany.
Covalent organic frameworks (COFs) have been emerging as versatile reticular materials due to their tunable structures and functionalities, enabled by precise molecular engineering at the atomic level. While the integration of multiple components into COFs has substantially expanded their structural complexity, the strategic engineering of diverse functionalities within a single framework the random distribution of linkers with varying lengths remains largely unexplored. Here, we report a series of highly crystalline mixed-length multivariate COFs synthesized using azobenzene and bipyridine as linkers, where tuning the ratio of linkers and incorporating palladium effectively modulates the balance between near-infrared (NIR) light absorption and catalytic sites for NIR-generation of hydrogen peroxide (HO).
View Article and Find Full Text PDFChem Sci
August 2025
College of Chemistry and Materials Science, Key Laboratory of Chemical Biology of Hebei Province, Hebei Research Center of the Basic Discipline of Synthetic Chemistry, Institute of Life Science and Green Development Hebei University Baoding Hebei 071002 P. R. China
The photocatalytic oxidative dipolar [3 + 2] cycloaddition reaction is a promising green approach for producing pyrrolo[2,1-]isoquinolines. However, developing sustainable cycloaddition methods with heterogeneous photocatalysts is still in its infancy, largely owing to their low reactivity and photostability. Herein, we propose a charge-oxygen synergy strategy through a dual-engineered covalent organic framework (COF) by integrating π-spacers with donor-acceptor motifs to promote intermolecular cycloaddition.
View Article and Find Full Text PDFIUCrdata
August 2025
Chemistry Department, Faculty of Science, Hadhramout University, Mukalla, Hadhramout, Yemen.
The asymmetric unit of the title compound, CHNO, contains two coplanar mol-ecules ( and ) completely located on mirror planes. In the crystal, N-H⋯O, N-H⋯N, C-H⋯O and C-H⋯N hydrogen bonds link the mol-ecules into sheets parallel to (010). There are neither significant π-π nor C-H⋯π(ring) inter-actions.
View Article and Find Full Text PDFChem Commun (Camb)
September 2025
Department of Chemical and Biological Sciences, S. N. Bose National Centre for Basic Sciences, Kolkata - 700106, India.
To highlight the critical role of donor-type functional group in COF photocatalysts for sustainable HO production under natural air and without sacrificial donors, herein, we demonstrated that methoxy-functionalised COFs (TTT-DMTA) outperform hydroxy-functionalised counterparts (TTT-DHTA) for HO production.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2025
Xi'an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, P.R. China.
MXenes serve as pivotal candidates for pseudocapacitive energy storage owing to sound proton/electron-transport capability and tunable topology. However, the metastable surface terminal properties and the progressive oxidation leads to drastic capacity fading, posing significant challenges for sustainable energy applications. Here, with the aramid nanofiber as the interface mediator, we engineer the thermal reconstruction of MXenes to synergistically introduce interfacial covalent and noncovalent interactions, resulting in a high specific capacitance of 531.
View Article and Find Full Text PDF