98%
921
2 minutes
20
Maize ( L.) is a vital crop worldwide, serving as a cornerstone for food security, livestock feed, and biofuel production. However, its cultivation is increasingly jeopardized by environmental challenges, notably soil salinization, which severely constrains growth, yield, and quality. To combat salinity stress, maize employs an array of adaptive mechanisms, including enhanced antioxidant enzyme activity and modulated plant hormone levels, which work synergistically to maintain reactive oxygen species (ROS) balance and ion homeostasis. This review explores the intricate interactions among ROS, antioxidant systems, plant hormones, and ion regulation in maize under salt stress, providing a comprehensive understanding of the physiological and molecular basis of its tolerance. By elucidating these mechanisms, this study contributes to the development of salt-tolerant maize varieties and informs innovative strategies to sustain agricultural productivity under adverse environmental conditions, offering significant theoretical insights into plant stress biology and practical solutions for achieving sustainable agriculture amidst global climate challenges.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11959903 | PMC |
http://dx.doi.org/10.1080/15592324.2025.2479513 | DOI Listing |
Transl Anim Sci
May 2025
Department of Animal Science, South Dakota State University, Brookings, SD 57007, USA.
Two experiments were conducted to evaluate the effects of feeding dry-rolled hybrid rye grain (DRRG) as a replacement for dry-rolled corn (DRC) in beef cattle finishing diets. Two inclusion strategies for rye grain (RG) were evaluated: a total replacement of DRC for a limited time and a partial replacement during the entire feeding trial for Exp. 1 and 2, respectively.
View Article and Find Full Text PDFFront Mol Biosci
August 2025
Department of Neurosurgery, Jiangnan University Medical Center, Wuxi, Jiangsu, China.
Introduction: Sulforaphane (SFN) is recognized for its anti-inflammatory properties; however, the underlying molecular mechanisms remain unclear. In this study, we explored the effect of SFN on subarachnoid hemorrhage (SAH) and the potential mechanisms.
Methods: Sprague-Dawley (SD) rats were divided into three groups (n = 12): Sham + vehicle group (Sham + V), SAH + vehicle group (SAH + V), and SAH + SFN group (SAH + S).
Front Plant Sci
August 2025
Institute of Biotechnology, Inner Mongolia Tongliao Agricultural and Animal Husbandry Academy, Tongliao, China.
Introduction: Straw return combined with rational nitrogen (N) fertilization plays a critical role in coordinating the transformation of soil organic carbon and nitrogen availability, thereby improving nitrogen use efficiency (NUE), crop yield, and soil fertility. However, the dynamics of soil carbon and nitrogen fractions under straw return with varying N inputs, and their specific contributions to NUE and yield, remain unclear.
Methods: A three-year split-plot field experiment was conducted in the Tumochuan Plain Irrigation District.
Food Sci Biotechnol
October 2025
College of Food Science and Engineering, Jilin University, Changchun, 130062 Jilin China.
Unlabelled: Lactic acid bacteria (LAB) fermentation has been shown to improve the nutritional and functional activity of grains. The aim of this study was to investigate the changes in physicochemical properties, antioxidant activity, hypoglycaemic activity and metabolites of maize juice after fermentation with two species of Lactobacillus and . The non-targeted metabolomics analysis based on UHPLC-Q-TOF-MS metabolomics method was performed to reveal the metabolic mechanism of corn juice.
View Article and Find Full Text PDFACS Omega
September 2025
College of Science & College of Material Science and Art Design, Inner Mongolia Agricultural University, Hohhot 010018, China.
Pesticides are of great significance in ensuring food yield. However, the extensive use of pesticides has led to severe environmental pollution and significant economic losses. Chitosan-based pesticide delivery systems potentially present a favorable approach to enhance pesticide using efficiency.
View Article and Find Full Text PDF