Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Guanylate binding protein 5 (GBP5) and exosomal miRNAs are involved in tumor progression. While several studies reveal the connection between GBP5 and exosomes for immune response and infection, this relationship in cancer, particularly in oral squamous cell carcinoma (OSCC), remains unexplored.

Methods: The exosomal miRNA extracted from the cells was analyzed using next-generation sequencing. Bioinformatic tools were used to predict exosomal miRNA target genes. OSCC cell growth was verified by colony formation, cell viability, and cell cycle analysis. The Cancer Genome Atlas database was used to inspect the prognosis of OSCC patients.

Results: Our results showed that OSCC cells treated with exosomes from GBP5-silenced OSCC cells reduced colony formation. Also, 56 differentially expressed exosomal miRNAs were found in GBP5-silenced OSCC cells compared to scrambled OSCC cells. Among them, exosomal miR-320d exhibited the highest negative correlation with GBP5 in OSCC patients. High GBP5/low miR-320d co-expression was linked to reduced disease-free survival (DFS) in patients with OSCC. Interestingly, the inhibitory effect of GBP5-silenced exosomes on OSCC cell growth was reversed by miR-320d inhibitors. Moreover, five miR-320d target genes were predicted, and only Family with Sequence Similarity 49, Member B (FAM49B) showed a negative correlation with miR-320d. A decreased level of FAM49B was found in OSCC cells treated with exosomes derived from GBP5-silenced OSCC cells, while the decreased level of FAM49B was reversed by miR-320d inhibitors. Silencing FAM49B and GBP5-silenced exosomes enhanced the cytotoxicity of paclitaxel. FAM49B was abundantly expressed in tumor tissues, and high FAM49B/low miR-320d and high GBP5/high FAM49B co-expression were linked to reduced DFS of OSCC patients.

Conclusion: Our study suggests that GBP5 downregulated exosomal miR-320d may trigger FAM49B expression and facilitate OSCC tumor growth and progression.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jop.13624DOI Listing

Publication Analysis

Top Keywords

oscc cells
24
oscc
14
cell growth
12
gbp5-silenced oscc
12
guanylate binding
8
binding protein
8
tumor progression
8
oral squamous
8
squamous cell
8
cell carcinoma
8

Similar Publications

Background: Docetaxel is the most common chemotherapy regimen for several neoplasms, including advanced OSCC (Oral Squamous Cell Carcinoma). Unfortunately, chemoresistance leads to relapse and adverse disease outcomes.

Methods: We performed CRISPR-based kinome screening to identify potential players of Docetaxel resistance.

View Article and Find Full Text PDF

Innate immune cells play an important role in the immune system and are mainly responsible for the rapid response to foreign pathogens, damaged tissues, or abnormal cells. However, their immunophenotype in oral squamous cell carcinoma (OSCC) is altered due to the influence of various components within the tumour microenvironment, including tumour cells, cancer associated fibroblasts, and the extracellular matrix. This immunophenotypic shift results in the suppression of anti-tumour-related immune functions and active participation in further remodelling of the tumour microenvironment.

View Article and Find Full Text PDF

Prussian Blue Nanoparticle-Induced Alteration of the Polarization State of Tumor-Associated Macrophages as a Substantial Antitumor Mechanism Against Oral Squamous Cell Carcinoma (OSCC).

Int J Nanomedicine

September 2025

Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, Jiangsu, People's Republic of China.

Introduction: Oral squamous cell carcinoma (OSCC) has a poor prognosis due to its immunosuppressive tumor microenvironment (TME), in which tumor-associated macrophages (TAMs) play a pivotal role in promoting disease progression and therapeutic resistance. This study examines whether Prussian blue nanoparticles (PB NPs) could reprogram TAMs and block tumor-stroma communication in OSCC.

Methods: PB NPs were synthesized using polyvinylpyrrolidone-assisted coprecipitation and characterized by transmission electron microscopy, dynamic light scattering, and UV-Vis spectroscopy.

View Article and Find Full Text PDF

Introduction Oral squamous cell carcinoma (OSCC), which is the most common cancer type in head and neck cancers, remains a serious health problem because of its high mortality. Treatment of OSCC is mainly performed with a combination of surgery and anticancer agents. However, despite the recent development of anticancer agents, the clinical outcome of OSCC has yet to be improved.

View Article and Find Full Text PDF

Lymph node metastasis (LNM) is a critical prognostic factor for patients with oral squamous cell carcinoma (OSCC). Previous research has implicated the partial epithelial-to-mesenchymal transition of tumor cells and myofibroblastic cancer-associated fibroblasts (myCAFs) in the LNM process. However, the underlying molecular mechanisms remain poorly understood.

View Article and Find Full Text PDF