98%
921
2 minutes
20
Normal heart function depends on complex regulation by the brain, and abnormalities in the brain‒heart axis affect various diseases, such as myocardial infarction and anxiety disorders. However, systematic tracking of the brain regions associated with the input and output of the heart is lacking. In this study, we injected retrograde transsynaptic pseudorabies virus (PRV) and anterograde transsynaptic herpes simplex virus (HSV) into the left ventricular wall of mice to identify the whole-brain regions associated with the input to and output from the heart. We successfully detected PRV and HSV expression in at least 170 brain subregions in both male and female mice. Sex differences were discovered mainly in the hypothalamus and medulla, with male mice exhibiting greater correlation and hierarchical clustering than female mice, indicating reduced similarity and increased modularity of virus expression patterns in male mice. Further graph theory and multiple linear regression analysis of different injection timelines revealed that hub regions of PRV had highly similar clusters, with different brain levels, suggesting a top-down, hierarchically transmitted neural control pattern of the heart. Hub regions of HSV had scattered clusters, with brain regions gathered in the cortex and brainstem, suggesting a bottom-up, leapfrog, multipoint neural sensing pattern of the heart. Both patterns contain many hub brain regions that have been previously overlooked in brain‒heart axis studies. These results provide brain targets for future research and will lead to deeper insight into the brain mechanisms involved in specific heart conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12264-025-01384-6 | DOI Listing |
J Assist Reprod Genet
September 2025
Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA.
Purpose: To determine if melatonin-enriched culture media could offset loss of imprinting in mouse concepti.
Methods: Zygotes were cultured to blastocyst stage under optimized conditions in melatonin-supplemented media at either 10 M (MT 10) or 10 M (MT 10), or without supplementation (Culture + embryo transfer, or ET, positive control). Blastocysts were also developed in vivo (ET negative control).
Mol Psychiatry
September 2025
Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur St., Warsaw, 02-093, Poland.
Alcohol use disorder (AUD) is characterized by pathological motivation to consume alcohol and cognitive inflexibility, leading to excessive alcohol seeking and use. In this study, we investigated the molecular correlates of impaired extinction of alcohol seeking during forced abstinence using a mouse model of AUD in the automated IntelliCage social system. This model distinguished AUD-prone and AUD-resistant animals based on the presence of ≥2 or <2 criteria of AUD, respectively.
View Article and Find Full Text PDFNat Commun
September 2025
Animal Physiology Unit, Institute of Neurobiology, University of Tübingen, Tübingen, Germany.
Interval timing, the ability to perceive and estimate durations between events, is essential for many animal behaviors. In mammals, it is linked to specific cortical and sub-cortical brain regions, but its neural basis in birds remains unclear. We trained two male carrion crows on a time estimation task using visual stimuli, cueing them to wait for a minimum duration of 1500 ms, 3000 ms, or 6000 ms before responding to receive a reward.
View Article and Find Full Text PDFeNeuro
September 2025
Department of Neurobiology and McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL35294 and.
The plasma membrane acts as a capacitor that plays a critical role in neuronal excitability and signal propagation. Neuronal capacitance is proportional to the area of the cell membrane, thus is often used as a measure of cell size that is assumed to be relatively stable. Recent work proposes that the capacitance of dentate granule cells and cortical pyramidal cells changes across the light-dark cycle in a manner that alters synaptic integration.
View Article and Find Full Text PDFJ Neurosci
September 2025
Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.
Human speech perception is multisensory, integrating auditory information from the talker's voice with visual information from the talker's face. BOLD fMRI studies have implicated the superior temporal gyrus (STG) in processing auditory speech and the superior temporal sulcus (STS) in integrating auditory and visual speech, but as an indirect hemodynamic measure, fMRI is limited in its ability to track the rapid neural computations underlying speech perception. Using stereoelectroencephalograpy (sEEG) electrodes, we directly recorded from the STG and STS in 42 epilepsy patients (25 F, 17 M).
View Article and Find Full Text PDF