Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Engineering high-performance N-doped carbon catalysts for peroxymonosulfate (PMS) activation and elucidating their activation mechanism are crucial for the degradation of emerging pollutants. In this study, we propose a novel self-template carbonization strategy (NSCS) based on a N-containing conjugated microporous polymer (NCMP, poly(triphenylamine)) to fabricate high-performance N-doped porous carbon catalysts. Owing to the unique N-mediated catalytic sites within the confined micropores of the NCMP precursor, the NSCS approach enables the investigation of reactive oxygen species evolution and their formation mechanisms as carbonization temperature increases from 200 to 1400 °C. The catalyst carbonized at 1000 °C exhibited high degradation activity (k = 0.170 min), driven primarily by O and O, with minor contributions from •OH and SO. Additionally, a PMS self-decomposition and ¹O generation mechanism within angstrom-confined spaces was identified. A self-supported carbon catalytic membrane was fabricated from CPTPA-1000 (CPTPA-CNT) due to its high conjugation and thermal stability. This membrane demonstrated efficient removal of organic pollutant (k = 123.54 min, 220.3 L m h bar, 120 h, 99.4 %), outperforming the carbonized CNT membrane (k = 19.54 min, 67.5 L m h bar, 120 h, 14.8 %). This work paves an avenue for the design of high-performance carbon-based membranes and gives new insights into the O generation mechanism in N-doped carbon catalysts.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2025.137862DOI Listing

Publication Analysis

Top Keywords

carbon catalysts
12
conjugated microporous
8
carbon catalytic
8
activation mechanism
8
high-performance n-doped
8
n-doped carbon
8
generation mechanism
8
bar 120 h
8
carbon
5
carbonized nitrogen-containing
4

Similar Publications

Construction of Zeolite Framework-Anchored Rh-(O-Zn) Sites for Ethylene Hydroformylation.

J Am Chem Soc

September 2025

National Engineering Research Center of Lower-Carbon Catalysis Technology, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.

Zeolite-confined Rh-based catalysts have emerged as promising heterogeneous candidates for olefin hydroformylation. However, they face challenges of reactant- and product-induced Rh leaching and aggregation. Herein, zeolite framework-anchored Rh-(O-Zn) sites were designed and are shown to have remarkable activity and stability for gas-phase ethylene hydroformylation.

View Article and Find Full Text PDF

The photocatalytic reduction of carbon dioxide (CO) to chemicals holds significant importance for mitigating the current energy crisis. Rational design of catalytic centers within well-defined structures can effectively enhance the reaction activity and selectivity. In this study, we constructed interrupted zeolitic boron imidazolate frameworks (BIFs) featuring unsaturated coordination at the central Co ion.

View Article and Find Full Text PDF

Modifying cells to achieve desired functions has attracted extensive attention in bioengineering and bio-manufacturing. Approaches based on cell-surface engineering have the potential to endow cells with multiple functions and also create a protective shell around them. However, such shells are generally irreversible and lack functionality, leading to various drawbacks associated with irreversible dynamics.

View Article and Find Full Text PDF

Developing the efficient C─H bond activation carboxylation processes for furoic acid (FA) represents a critical technological challenge in achieving atom-economical synthesis of 2,5-furandicarboxylic acid (FDCA). Despite notable advancements in this field, the inherent contradiction between the high reactivity of furan rings and the chemical inertness of C─H bonds poses substantial technical bottleneck for achieving controllable C─H carboxylation under mild conditions. Herein, we report a high lattice-distorted MnOx catalyst with surface trench-like structures, wherein the Mn-O-conjugated configurations and electron-rich Mn cooperatively drive FA dehydrogenation and carbon radical reduction, inducing the free radical evolution process (FA→carbon-centered FA radical→FA carbanion), then coupled with solvent-polarized CO to accelerate the carboxylation process.

View Article and Find Full Text PDF

High-entropy spinel (FeCoNiMnCr)O nanoparticles supported on carbon nanotubes for enhanced electrochemical seawater oxidation.

Chem Commun (Camb)

September 2025

Key Laboratory of Special Functional Materials for Ecological Environment and Information (Ministry of Education), School of Material Science and Engineering, Hebei University of Technology, Tianjin 300130, P. R. China.

High-performance, low-cost electrocatalysts are essential for freshwater-independent seawater electrolysis. We design a SWCNT-supported (FeCoNiMnCr)O high-entropy spinel oxide by a hydrothermal method and air-firing, where the conductive network enhances charge transfer and active site exposure. The catalyst achieves 282 mV@10 mA cm with 100 h stability in alkaline seawater.

View Article and Find Full Text PDF