A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

FoxO3 controls cardiomyocyte proliferation and heart regeneration by regulating Sfrp2 expression in postnatal mice. | LitMetric

FoxO3 controls cardiomyocyte proliferation and heart regeneration by regulating Sfrp2 expression in postnatal mice.

Nat Commun

Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Department of Developmental & Regenerative Biology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China.

Published: March 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The Forkhead box O3 (FoxO3) transcription factor is crucial to controlling heart growth in adulthood, but its exact role in cardiac repair and regeneration in postnatal mice remains unclear. Here, we show that FoxO3 deficiency promotes cardiomyocyte proliferation in postnatal mice and improves cardiac function in homeostatic adult mice. Moreover, FoxO3 deficiency accelerates heart regeneration following injury in postnatal mice at the regenerative and non-regenerative stages. We reveal that FoxO3 directly promotes the expression of secreted frizzled-related protein 2 (Sfrp2) and suppresses the activation of canonical Wnt/β-catenin signaling during heart regeneration. The increased activation of β-catenin in FoxO3-deficient cardiomyocytes can be blocked by Sfrp2 overexpression. In addition, Sfrp2 overexpression suppressed cardiomyocyte proliferation and heart regeneration in FoxO3-deficient mice. These findings suggest that FoxO3 negatively controls cardiomyocyte proliferation and heart regeneration in postnatal mice at least in part by promoting Sfrp2 expression, which leading to the inactivation of canonical Wnt/β-catenin signaling.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11909131PMC
http://dx.doi.org/10.1038/s41467-025-57962-9DOI Listing

Publication Analysis

Top Keywords

heart regeneration
20
postnatal mice
20
cardiomyocyte proliferation
16
proliferation heart
12
controls cardiomyocyte
8
sfrp2 expression
8
regeneration postnatal
8
foxo3 deficiency
8
canonical wnt/β-catenin
8
wnt/β-catenin signaling
8

Similar Publications