98%
921
2 minutes
20
Microglia polarization plays important roles in inflammatory processes after ischemic stroke. This study aimed to explore the mechanism of lysine-specific histone demethylase 4 (KDM4A) in microglia polarization after ischemic stroke. The mouse model was established using middle cerebral artery occlusion/reperfusion (MCAO/R) and the cell model was established by oxygen-glucose deprivation/reperfusion (OGD/R). The neurological deficits and brain tissue injury were evaluated. The biomarkers of microglia were determined. Levels of KDM4A/mouse double minute-2 homolog (MDM2)/C1q/TNF-related protein-3 (CTRP3) were measured. Inflammatory cytokines were quantified. The impact of KDM4A on microglia polarization was assessed. The enrichment of KDM4A or histone 3 lysine 9 trimethylation (H3K9me3) on the MDM2 promoter was analyzed. The ubiquitination and protein levels of CTRP3 after MG132 and cycloheximide treatment were determined. Results showed that KDM4A and MDM2 were upregulated while CTRP3 was downregulated. KDM4A downregulation alleviated neurological dysfunction, rescued motor capacity, reduced inflammatory infiltration, suppressed microglia activation, and promoted M2 polarization. KDM4A inhibited the enrichment of H3K9me3 on the MDM2 promoter, increasing MDM2 expression and downregulating CTRP3 expression via ubiquitination and degradation. MDM2 overexpression or CTRP3 downregulation averted the promotive role of silencing KDM4A in microglia polarization. In conclusion, KDM4A promotes microglia polarization to aggravate ischemic stroke via the MDM2/CTRP3 axis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12010-025-05207-2 | DOI Listing |
J Biochem
September 2025
Division of Enzyme Pathophysiology, Institute for Enzyme Research, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan.
Microglia, the central nervous system's resident macrophages, are critical for immune defense, protecting neurons during infection. Their role in postnatal brain development, particularly after injury, remains unclear. Nucling, a protein up-regulated during cardiac muscle differentiation, regulates NF-κB, influencing apoptosis and cell proliferation.
View Article and Find Full Text PDFNeurol Res
September 2025
Department of Human Anatomy, Wannan Medical College, Wuhu, China.
Background: Ischemic stroke can damage the cerebral white matter, resulting in myelin loss and neurological deficits. Moreover, microglial activation plays an important role in ischemic stroke; therefore, inhibiting microglial activation has become an effective therapeutic target for ischemic stroke.
Objective: This study aimed to investigate the effects of electroacupuncture (EA) on microglial activation and polarization, and the role of oligodendrocyte genesis in myelin reformation after ischemic stroke.
Brain Behav
September 2025
Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, P. R. China.
Background: Ischemic stroke (IS) is a common neurological disease with a significant financial burden but lacks effective drugs. This study sought to explore the mechanisms underlying MAP kinase-interacting serine/threonine-protein kinase 2 (MKNK2), a gene enriched in the hypoxia-inducible factor-1 (HIF-1) signaling, in IS-related neurological injury.
Methods: Middle cerebral artery occlusion/reperfusion (MCAO/R) and oxygen-glucose deprivation/reoxygenation (OGD/R) models were used in vivo and in vitro.
J Integr Neurosci
August 2025
Institute of Neuroscience and Third Affiliated Hospital, Zhengzhou University, 450052 Zhengzhou, Henan, China.
Background: Germinal matrix hemorrhage (GMH) is a common complication of premature infants with lifelong neurological consequences. Inflammation-mediated blood-brain barrier (BBB) disruption has been implicated as a main mechanism of secondary brain injury after GMH. The cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS)-stimulator of interferon genes (STING) pathway plays a crucial role in inflammation, yet its involvement in GMH pathophysiology remains unclear.
View Article and Find Full Text PDFBackground: Perioperative neurocognitive disorders (PND) is a significant clinical syndrome and neuroinflammation is an important pathological process. Matrix metalloproteinase 9 (MMP9) as a Zn2+-dependent matrix enzyme, not only maintains the integrity of the blood-brain barrier and synaptic plasticity, but also plays a key regulatory factor in peripheral and central nervous inflammation. This study aimed to investigate the effects of MMP9-mediated microglial polarization on surgery-induced neuroinflammation in aged rats and to provide novel targets for prevention and treatment of PND.
View Article and Find Full Text PDF