98%
921
2 minutes
20
The modern era demands multifunctional materials to support advanced technologies and tackle complex environmental issues caused by these innovations. Consequently, material hybridization has garnered significant attention as a strategy to design materials with prescribed multifunctional properties. Drawing inspiration from nature, a multi-scale material design approach is proposed to produce 3D-shaped hybrid materials by combining chaotic flows with direct ink writing (ChDIW). This approach enables the formation of predictable multilayered filaments with tunable microscale internal architectures using just a single printhead. By assigning different nanomaterials to each layer, 3D-printed hydrogels and cryogels with diverse functionalities, such as electrical conductivity and magnetism are successfully produced. Furthermore, control over the microscale pore morphology within each cryogel filament is achieved, resulting in a side-by-side dual-pore network sharing a large interfacial area. The ChDIW is compatible with different types of hydrogels as long as the rheological features of the printing materials are well-regulated. To showcase the potential of these multilayered cryogels, their electromagnetic interference shielding performance is evaluated, and they reveal an absorption-dominant mechanism with an excellent absorption coefficient of 0.71. This work opens new avenues in soft matter and cryogel engineering, demonstrating how simplicity can generate complexity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12391654 | PMC |
http://dx.doi.org/10.1002/smtd.202500349 | DOI Listing |
ACS Appl Mater Interfaces
September 2025
Department of Materials Science and Engineering, College of Engineering, Texas A&M University, College Station, Texas 77843, United States.
Hydrogel-based bioinks are widely adopted in digital light processing (DLP) 3D printing. Modulating their mechanical properties is especially beneficial in biomedical applications, such as directing cell activity toward tissue regeneration and healing. However, in both monolithic and granular hydrogels, the tunability of mechanical properties is limited to parameters such as cross-linking or packing density.
View Article and Find Full Text PDFTalanta
September 2025
Department of Cardiology, Affiliated Huishan Hospital of Xinglin College, Nantong University, Wuxi Huishan District People's Hospital, Wuxi, 214187, China. Electronic address:
Disposable electrochemical aptasensors (DEAs) hold significant promise for different analyte detection across diverse fields, due to inherent advantages of rapid response, portability, low cost, and high sensitivity. This review systematically examines the design strategies, signal amplification methodologies, and recent advances in DEAs in the fields of environmental analysis, food safety monitoring, and medical diagnostics. Specifically, it critically evaluates construction strategies for screen-printed electrodes (SPEs) and paper-based electrodes, including substrate selection, ink formulations, and key fabrication techniques such as screen printing, inkjet printing, deposition methods, and direct-writing technologies.
View Article and Find Full Text PDFSmall
September 2025
Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, 999077, China.
A porous KVPOF/reduced graphene oxide (KVPF/rGO) microgrid aerogel electrode is designed and fabricated using direct ink writing 3D printing for high-performance potassium-ion battery cathodes. This 3D-printed KVPF/rGO aerogel electrode, which integrates well-dispersed KVPOF microspheres in the reduced graphene oxide matrix, shows enhanced structural integrity and electrical conductivity, thereby facilitating efficient ion and electron transport. The KVPF/rGO electrode achieves a reversible discharge capacity of 99.
View Article and Find Full Text PDFNat Commun
September 2025
State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai, China.
Coupling superior thermal insulation performance with high transparency for solar transmission and excellent processability in aerogels is a challenging yet promising subject. Here, we report a direct ink writing strategy to create transparent polymethylsilsesquioxane (PMSQ) aerogels from gel inks with desired rheology, by merely using acid-base dual modulators to achieve "activation-retardation" of polycondensation reaction. The printed aerogels are pure PMSQ, have a transmittance of 97% in the visible-near infrared range, thermal conductivity (16.
View Article and Find Full Text PDFNPJ Microgravity
August 2025
Advanced Ceramics, University of Bremen, Bremen, Germany.
The long-term goal of establishing a sustained human presence on Mars requires the capacity to produce essential consumables on-site. To this end, we develop strategies for processing inorganic oxidic powders and biomass into highly particle-filled composites using direct ink writing (DIW) 3D printing. Our approach relies on a simulant of a Martian regolith unit rich in hydrated clay minerals and food-grade spirulina, used as proxies for local regolith and cyanobacterial biomass, respectively.
View Article and Find Full Text PDF