Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This study compared the image quality of conventional multiplexed sensitivity-encoding diffusion-weighted imaging (MUSE-DWI) and deep learning MUSE-DWI with that of vendor-specific deep learning (DL) reconstruction applied to bladder MRI. This retrospective study included 57 patients with a visible bladder mass. DWI images were reconstructed using a vendor-provided DL algorithm (AIR Recon DL; GE Healthcare)-a CNN-based algorithm that reduces noise and enhances image quality-applied here as a prototype for MUSE-DWI. Two radiologists independently assessed qualitative features using a 4-point scale. For the quantitative analysis, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), signal intensity ratio (SIR), and apparent diffusion coefficient (ADC) of the bladder lesions were recorded by two radiologists. The weighted kappa test and intraclass correlation were used to evaluate the interobserver agreement in the qualitative and quantitative analyses, respectively. Wilcoxon signed-rank test was used to compare the image quality of the two sequences. DL MUSE-DWI demonstrated significantly improved qualitative image quality, with superior sharpness and lesion conspicuity. There were no significant differences in the distortion or artifacts. The qualitative analysis of the images by the two radiologists was in good to excellent agreement (κ ≥ 0.61). Quantitative analysis revealed higher SNR, CNR, and SIR in DL MUSE-DWI than in MUSE-DWI. The ADC values were significantly higher in DL MUSE-DWI. Interobserver agreement was poor (ICC ≤ 0.32) for SNR and CNR and excellent (ICC ≥ 0.85) for SIR and ADC values in both DL MUSE-DWI and MUSE-DWI. DL MUSE-DWI significantly enhanced the image quality in terms of lesion sharpness, conspicuity, SNR, CNR, and SIR, making it a promising tool for clinical imaging.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11899046PMC
http://dx.doi.org/10.3390/diagnostics15050595DOI Listing

Publication Analysis

Top Keywords

image quality
20
snr cnr
12
muse-dwi muse-dwi
12
muse-dwi
10
multiplexed sensitivity-encoding
8
sensitivity-encoding diffusion-weighted
8
diffusion-weighted imaging
8
bladder mri
8
deep learning
8
quantitative analysis
8

Similar Publications

Background: Poststroke cognitive impairment (PSCI) affects 30% to 50% of stroke survivors, severely impacting functional outcomes and quality of life. This study uses functional near-infrared spectroscopy (fNIRS) to assess task-evoked brain activation and its potential for stratifying the severity in patients with PSCI.

Method: A cross-sectional study was conducted at Nanchong Central Hospital between June 2023 and April 2024.

View Article and Find Full Text PDF

Rotator cuff tendinopathy is a common cause of shoulder pain and dysfunction, presenting in two primary forms: calcific and non-calcific. These subtypes differ significantly in their pathophysiology, clinical manifestations, and natural history, necessitating tailored diagnostic and therapeutic approaches. This review delineates the clinical presentations of calcific rotator cuff tendinopathy (RCCT), characterized by distinct pre-calcific, calcific, and post-calcific stages, and contrasts them with the more insidious, degenerative course of non-calcific rotator cuff tendinopathy.

View Article and Find Full Text PDF

Background: In clinical practice, digital subtraction angiography (DSA) often suffers from misregistration artifact resulting from voluntary, respiratory, and cardiac motion during acquisition. Most prior efforts to register the background DSA mask to subsequent postcontrast images rely on key point registration using iterative optimization, which has limited real-time application.

Purpose: Leveraging state-of-the-art, unsupervised deep learning, we aim to develop a fast, deformable registration model to substantially reduce DSA misregistration in craniocervical angiography without compromising spatial resolution or introducing new artifacts.

View Article and Find Full Text PDF

Digital twins in nuclear medicine: A proposition of a modular pipeline for dosimetry protocol optimization in molecular radiotherapy.

Comput Struct Biotechnol J

August 2025

Institut de Recherche en Cancérologie de Montpellier (IRCM), Équipe Labellisée Ligue Contre le Cancer, INSERM U1194, Université de Montpellier, Institut régional du Cancer de Montpellier (ICM), Montpellier, France.

Digital twins (DTs) are emerging tools for simulating and optimizing therapeutic protocols in personalized nuclear medicine. In this paper, we present a modular pipeline for constructing patient-specific DTs aimed at assessing and improving dosimetry protocols in PRRT such as therapy. The pipeline integrates three components: (i) an anatomical DT, generated by registering patient CT scans with an anthropomorphic model; (ii) a functional DT, based on a physiologically-based pharmacokinetic (PBPK) model created in SimBiology; and (iii) a virtual clinical trial module using GATE to simulate particle transport, image simulation, and absorbed dose distribution.

View Article and Find Full Text PDF

Background: The use of artificial intelligence platforms by medical residents as an educational resource is increasing. Within orthopaedic surgery, older Chat Generative Pre-trained Transformer (ChatGPT) models performed worse than resident physicians on practice examinations and rarely answered questions with images correctly. The newer ChatGPT-4o was designed to improve these deficiencies but has not been evaluated.

View Article and Find Full Text PDF