98%
921
2 minutes
20
Soil salinization has emerged as a major factor negatively affecting soil quality and plant productivity. Proline, functioning as an osmotic regulator, has been proposed as an effective strategy for enhancing plant tolerance to salt stress. This study aimed to investigate the effects of exogenous proline on salt tolerance in soybeans. A hydroponic experiment was conducted with different salt treatments (without NaCl, -NaCl; with 100 mM NaCl, +NaCl) and with or without 150 mM proline (+Pro, -Pro). The results showed that proline application alleviated salt stress-induced reductions in plant growth, photosynthetic parameters, and chlorophyll content while aiding recovery from leaf chlorosis. Proline treatment improved ion homeostasis by reducing Na levels and increasing K and Ca contents in the leaves. Salt stress increased malondialdehyde (MDA) and reactive oxygen species (ROS) levels, along with leaf peroxidase (POD) and catalase (CAT) activities, while decreasing superoxide dismutase (SOD) activity. Moreover, salt stress obviously enhanced proline accumulation, accompanied by increases in glutamate (Glu), glutamate-1-semialdehyde (GSA), and pyrroline-5-carboxylate (P5C) content, as well as the activities of pyrroline-5-carboxylate synthase (P5CS) and pyrroline-5-carboxylate reductase (P5CR) in the glutamate pathway, while reducing proline dehydrogenase (ProDH) activity. Exogenous proline treatment further elevated proline content and increased key substances and enzyme activities in both the glutamate (Glu and P5C content, P5CS and P5CR activity) and ornithine (Orn content and OAT activity) pathways while also reducing ProDH activity. Collectively, our results revealed that exogenous proline contributed to an attenuation of salt stress in soybeans by regulating both the glutamate and ornithine pathways to stimulate endogenous proline accumulation, mediate Na/K homeostasis, and inhibit oxidative damage.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ecoenv.2025.118012 | DOI Listing |
Physiol Mol Biol Plants
July 2025
Plant Physiology and Biochemistry Research Laboratory, Department of Botany, University of Kashmir, Srinagar, 190006 India.
Unlabelled: Oxidative stress mediated by reactive oxygen species and the concomitant antioxidant defenses orchestrate the senescence trajectory in ethylene-insensitive flowers. This investigation delineates the potential of γ-Aminobutyric acid (GABA) in ameliorating oxidative damage and impeding senescence in detached scapes of , an ethylene-insensitive flower system. The delayed senescence and enhanced scape performance were attributed to the upregulation of antioxidant enzyme activities, including superoxide dismutase, catalase and ascorbate peroxidase, which were elevated by 52.
View Article and Find Full Text PDFPlants (Basel)
August 2025
College of Architectural Engineering, Shenzhen Polytechnic University, Shenzhen 518055, China.
Lead (Pb) and cadmium (Cd) severely impair rice growth, yield, and grain quality. This study assessed the role of exogenous gamma-aminobutyric acid (GABA) in mitigating Pb and Cd toxicity in aromatic rice 'Guixiangzhan'. Treatments included the control (no Pb, Cd, or GABA), GABA (1 mM), Pb (800 mg/kg of soil)+GABA, Cd (75 mg/kg of soil)+GABA, Pb+Cd+GABA, Pb, Cd, and Pb+Cd without GABA.
View Article and Find Full Text PDFMicroorganisms
August 2025
School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China.
Soil salinization severely restricts crop growth and presents a major challenge to global agriculture. In this study, a plant-growth-promoting rhizobacterium (PGPR) was isolated and identified as sp. through 16S rDNA analysis and was subsequently named sp.
View Article and Find Full Text PDFAntibiotics (Basel)
July 2025
National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China.
Background: infections pose a serious threat to both animal and human health worldwide. Notably, there is an increasing trend in the resistance of to fluoroquinolones, the first-line drugs for clinical treatment.
Methods: Utilizing Typhimurium CICC 10420 as the test strain, ciprofloxacin was used for in vitro induction to develop the drug-resistant strain H1.
BMC Plant Biol
August 2025
Department of Life Sciences, University of Changzhi, Changzhi, 046000, China.
Background: Metal pollution in agricultural soils is imparting devastating influence on the growth and yield of crop plants. Therefore, role of gibberellic acid (GA; 100 mg L) priming and the foliar spray of spermine (Spm; 200 µM) in mitigating the effects of mercury (Hg; 20 µM) stress on growth, photosynthesis, nitrogen metabolism and nutrient uptake were studied in tomato.
Results: Mercury (Hg) significantly reduced plant height, fresh and dry weight, chlorophylls, carotenoids and photosynthetic parameters significantly however, GA and Spm treatments alleviated the decline considerably.