Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The research on finding alternative natural and inexpensive materials for the development of biodegradable intelligent food packaging materials is increasing day by day to reduce plastic waste in the environment. In this study, new oak tree acorn starch-based films (S) with pH-sensitive and antimicrobial property were developed using oak tree acorns, quercetin (QUE) extract obtained from red onion peel and ZnO nanoparticles and their physicochemical, mechanical, thermal and barrier properties were compared with those of methyl cellulose-based films. S-QUE film having colorimetric pH-indicator property showed an obvious color variation from pink to green/yellow at different pH values (pH 1-12). Compared to S film, the maximum tensile stress and maximum tensile strain values of the S-QUE film increased by 93.34 % and 296.56 %, respectively. The presence of QUE extract in the film matrix increased the thermal stability of films and ZnO nanoparticles decreased it. The use of QUE extract and ZnO nanoparticles in film formulation led to an improvement in the water vapor barrier properties of films. The effectiveness of S-QUE and S-QUE-ZnO films in monitoring the spoilage of chicken meat was tested. These films showed visible color responses as the chicken meat spoiled.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2025.141925DOI Listing

Publication Analysis

Top Keywords

oak tree
12
chicken meat
12
zno nanoparticles
12
tree acorn
8
red onion
8
onion peel
8
barrier properties
8
s-que film
8
maximum tensile
8
films
7

Similar Publications

Theory, manipulation experiments and observational studies on biodiversity and ecosystem functioning largely concur that higher intraspecific diversity may increase the overall productivity of populations, buffer against environmental change and stabilize long-term productivity. However, evidence comes primarily from small and short-lived organisms. We tested for effects of genetic diversity on variation in forest growth by combining long-term data on annual individual growth rate (basal area increment (BAI)) with estimates of intrapopulation genetic variation (based on RAD-seq SNPs) for 18 natural pedunculate oak populations.

View Article and Find Full Text PDF

Due to the growing environmental and health concerns with chemical plant stimulants, there is a growing need to find alternative sources of plant stimulants that could help the seeds germinate and sustain their growth in the global climate change scenario. The article compares various seed stimulants such as chemical compounds (benzothiadiazole, salicylic acid, glycine betaine), alcoholic extracts from commercial plant products (English oak bark, ginger spices, turmeric spices, caraway fruits) and from wild plant leaves (Japanese pagoda tree, Himalayan balsam, stinging nettle and Bohemian knotweed) and their effects on wheat seed germination and seedling characteristics. It was found that BTH had significantly lower effect on seedling characteristics such as SG3 (%), SG5 (%), R/S III, SVI I (mm) and SVI III (mg) followed by ZO on SG3 (%), SG5 (%) and GI (unit).

View Article and Find Full Text PDF

Somatic embryogenesis (SE) is an in vitro mass propagation system widely employed in plant breeding programs. However, its efficiency in many forest species remains limited due to their recalcitrance. SE relies on the induction of somatic cell reprogramming into embryogenic pathways, a process influenced by transcriptomic changes regulated, among other factors, by epigenetic modifications such as DNA methylation, histone methylation, and histone acetylation.

View Article and Find Full Text PDF

A novel molecularly imprinted polymer (MIP)-based electrochemical sensor has been developed for the selective detection of naringenin (NAR) in various real-world samples, including plant extracts, wine, and herbal supplements. To enhance the active surface area and porosity of the glassy carbon electrode (GCE), a 2D/0D nanocomposite composed of graphene oxide (GO) and cobalt ferrite (CFO) nanoparticles, CFO_GO, was incorporated into the sensor design. 4-aminobenzoic acid (4-ABA) was selected as the functional monomer to prepare the MIPs.

View Article and Find Full Text PDF

Urbanization and increasing vehicular traffic have intensified air pollution, particularly the accumulation of particulate matter (PM), trace elements (TEs), and polycyclic aromatic hydrocarbons (PAHs) in urban environments. These pollutants pose significant risks to human health, urban ecosystems, and biodiversity. This study evaluates the efficacy of mixed-species vegetation barriers, comprising , , , and , in mitigating air pollution along three road types (highway, urban, and suburban).

View Article and Find Full Text PDF