98%
921
2 minutes
20
Elucidating the underlying mechanism of effective chirality and energy transfer processes observed in biological assemblies has cross-disciplinary significance, and it is of special interest in the fields of chemistry and biology due to the pivotal role of chirality in life. Challenges in the field include how to achieve real-time monitoring of the chirality and energy transfer dynamics simultaneously, as well as how to distinguish whether these processes take place in the ground or excited state. Herein, we achieve the first attempt at real-time observation of the concerted ultrafast dynamics between the Förster resonance energy transfer (FRET) and the generation of circularly polarized luminescence (CPL) in the excited state in near-infrared CPL supramolecular nanofibers (SNFs) by using femtosecond time-resolved circularly polarized luminescence (fs-TRCPL) spectroscopy. Our findings reveal a cooperative interplay between FRET and CPL emission, unfolding over time scales from several to hundreds of picoseconds. Notably, we identify that the pivotal mechanism leading to a 0.045 value in SNFs is the difference in the FRET rates between left- and right-handed circularly polarized emission channels, which is a reason beyond the well-known relationship of the electronic and magnetic dipoles. Our results not only shed light on the understanding of the chirality transfer mechanism in the excited states but also pave the road for the development of novel CPL materials in the future.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.5c00695 | DOI Listing |
Nat Aging
September 2025
Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, Lørenskog, Norway.
Beyond their classical functions as redox cofactors, recent fundamental and clinical research has expanded our understanding of the diverse roles of nicotinamide adenine dinucleotide (NAD) and nicotinamide adenine dinucleotide phosphate (NADP) in signaling pathways, epigenetic regulation and energy homeostasis. Moreover, NAD and NADP influence numerous diseases as well as the processes of aging, and are emerging as targets for clinical intervention. Here, we summarize safety, bioavailability and efficacy data from NAD-related clinical trials, focusing on aging and neurodegenerative diseases.
View Article and Find Full Text PDFNat Chem
September 2025
Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA.
Proton transfer plays an important role in both hydrogen and oxygen evolution reactions during electrocatalytic water splitting to produce green hydrogen. However, directly adapting the conventional proton/deuterium kinetic isotope effect to study proton transfer in heterogeneous electrocatalytic processes is challenging. Here we propose using the shift in the Tafel slope between protic and deuteric electrolytes, or the Tafel slope isotope effect, as an effective probe of proton transfer characteristics.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
College of Chemistry and Chemical Engineering, Institute of Interdisciplinary Studies, Hunan Normal University, Changsha 410081, China.
The oxygen evolution reaction (OER) in conventional zinc-air batteries (ZABs) involves a complex multielectron transfer process, leading to slow reaction kinetics, high charging voltage, and low energy efficiency. To address these limitations, a zinc-ethanol/air battery (ZEAB) system that strategically replaces the OER with the ethanol oxidation reaction (EOR) possessing a lower thermodynamic potential has been proposed. Herein, a bimetallic catalyst CuCo-embedded nitrogen-doped carbon (CuCo-20%-1), derived from a Cu/Co/Cd co-coordinated metal-organic precursor, is synthesized and exhibits an excellent performance for both EOR and ORR.
View Article and Find Full Text PDFJ Am Soc Mass Spectrom
September 2025
Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States.
An ongoing goal of top-down mass spectrometry is to increase the performance for larger proteins. Using higher energy activation methods, like 193 nm ultraviolet photodissociation (UVPD), offers the potential to cause more extensive fragmentation of large proteins and thereby yield greater sequence coverage. Obtaining high sequence coverage requires confident identification and assignment of fragment ions, and this process is hampered by spectral congestion and low signal-to-noise ratio (S/N) of the fragment ions.
View Article and Find Full Text PDFPlant Cell Physiol
September 2025
Biostructural Mechanism Laboratory, RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan.
Phycobilisome (PBS) is a water-soluble light-harvesting supercomplex found in cyanobacteria, glaucophytes, and rhodophytes. PBS interacts with photosynthetic reaction centers, specifically photosystems II and I (PSII and PSI), embedded in the thylakoid membrane. It is widely accepted that PBS predominantly associates with PSII, which functions as the initial complex in the linear electron transport chain.
View Article and Find Full Text PDF