Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Global climate change threatens the production, growth, and sustainability of plants. Crop wild relatives (CWRs) offer a practical and sustainable solution to these climatic issues by boosting genetic diversity and crop resilience. Even though CWRs are wild relatives of domesticated plants, they are nevertheless mostly neglected. This review focuses on the possible application of CWRs, which are found in the United Arab Emirates (UAE) and are known for their abiotic stress tolerance and potential medicinal properties. In olden days, traditionally, CWRs has been used as medicine for various ailments as they are rich in phytochemical compounds. However, the medicinal potential of these wild plant species is decreasing at an alarming rate due to climate change stress factors. The medicinal potential of these native crop wild plant species must be investigated because they could be a useful asset in the healthcare sector. Research on pangenomics studies of certain CWRs is also highlighted in the review, which reveals genetic variability caused due to climate change stress factors and how these genetic variability changes affect the production of secondary metabolites that have potent medicinal value. This provides insights into developing personalized medicine, in which particular CWRs plant species can be chosen or modified to generate medicinal compounds. Despite their superior medicinal properties, many CWRs in the UAE are still not well understood. Finding the desired genes coding for the biosynthesis of specific phytochemicals or secondary metabolites may help us better understand how these substances are synthesized and how to increase their production for a range of treatments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11887499PMC
http://dx.doi.org/10.2147/DDDT.S497800DOI Listing

Publication Analysis

Top Keywords

crop wild
12
wild relatives
12
climate change
12
plant species
12
cwrs
8
relatives cwrs
8
cwrs united
8
united arab
8
arab emirates
8
potential medicinal
8

Similar Publications

Biofortification of tomatoes with beta-carotene through targeted gene editing.

Int J Biol Macromol

September 2025

Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Minhang, Shanghai, 200240, China. Electronic address:

Vitamin A deficiency is one of the most severe micronutrient-related health issues worldwide. Tomatoes, a widely cultivated crop for their adaptability, nutritional value, and lycopene content (a beta-carotene precursor), are ideal candidates for biofortification. In this study, CRISPR-mediated knockout mutants (cr-SlLCYe and cr-SlBCH) were generated to enhance the precursor supply to the β-carotene biosynthetic pathway and reduce its degradation.

View Article and Find Full Text PDF

A single-nucleotide polymorphism in BoDW1 encoding microtubule-associated kinase causes dwarfing in Brassica oleracea.

Plant Physiol Biochem

September 2025

State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China. Electronic address:

Cabbage (Brassica oleracea var. capitata) is an important vegetable crop that is widely cultivated throughout the world. Plant height is a key agronomic trait in cabbage, influencing architecture and yield, and is mainly determined by cell division and stem expansion.

View Article and Find Full Text PDF

GreenCells: A comprehensive resource for single-cell analysis of plant lncRNAs.

J Biol Chem

September 2025

School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China; CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Yunnan Key Laboratory of Crop Wild Relatives Omics, Xishuangbanna Tropical Botanical Garden, Chines

Long non-coding RNAs (lncRNAs) play crucial roles in plant growth, development, and stress responses. With the advancement of single-cell RNA sequencing (scRNA-seq) technology, it is now possible to investigate lncRNA expression and function at single-cell resolution. Although several plant single-cell transcriptome databases have been established, they predominantly focus on protein-coding genes while largely overlooking lncRNAs.

View Article and Find Full Text PDF

Stomatal pores govern the tradeoff between CO₂ assimilation and water loss, and optimizing their performance is critical for crop resilience, particularly under dynamic field environments. Here, we show that overexpression of Triticum aestivum EPIDERMAL PATTERNING FACTOR1 (TaEPF1) in bread wheat (Triticum aestivum) reduces leaf stomatal density in a leaf surface-specific manner, with a greater decline on the abaxial surface than on the adaxial surface. TaEPF1 overexpressors exhibited substantially lower stomatal conductance than wild-type (WT) control plants, which resulted in diffusional constraints limiting photosynthesis when measured under monochromatic red light.

View Article and Find Full Text PDF

The rice cation/calcium exchanger OsCCX2 is involved in calcium signal clearance and osmotic tolerance.

J Integr Plant Biol

September 2025

Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Science, Hunan Normal University, Changsha, 410081, China.

Hyperosmolality-triggered physiological drought hinders plant growth and development, leading to a drop in crop yields. Hyperosmolality triggers calcium signaling, and yet how osmotic-induced calcium signaling participates in cellular osmotic response remains enigmatic. To date, several Ca channels and transporters have been identified to regulate osmotic-induced calcium signal generation (CaSG) or Ca homeostasis.

View Article and Find Full Text PDF