Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Evolutionary Rate Covariation (ERC) is an established comparative genomics method that identifies sets of genes sharing patterns of sequence evolution, which suggests shared function. Whereas many functional predictions of ERC have been empirically validated, its predictive power has hitherto been limited by its inability to tackle the large numbers of species in contemporary comparative genomics datasets. This study introduces ERC2.0, an enhanced methodology for studying ERC across phylogenies with hundreds of species and tens of thousands of genes. ERC2.0 improves upon previous iterations of ERC in algorithm speed, normalizing for heteroskedasticity, and normalizing correlations via Fisher transformations. These improvements have resulted in greater statistical power to predict biological function. In exemplar yeast and mammalian datasets, we demonstrate that the predictive power of ERC2.0 is improved relative to the previous method, ERC1.0, and that further improvements are obtained by using larger yeast and mammalian phylogenies. We attribute the improvements to both the larger datasets and improved rate normalization. We demonstrate that ERC2.0 has high predictive accuracy for known annotations and can predict the functions of genes in non-model systems. Our findings underscore the potential for ERC2.0 to be used as a single-pass computational tool in candidate gene screening and functional predictions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11888306PMC
http://dx.doi.org/10.1101/2025.02.24.639970DOI Listing

Publication Analysis

Top Keywords

evolutionary rate
8
rate covariation
8
comparative genomics
8
functional predictions
8
predictive power
8
yeast mammalian
8
improvements larger
8
erc
5
erc20
5
erc evolutionary
4

Similar Publications

ANASFV: a workflow for African swine fever virus whole-genome analysis.

Microb Genom

September 2025

Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, PR China.

African swine fever virus (ASFV) is highly transmissible and can cause up to 100% mortality in pigs. The virus has spread across most regions of Asia and Europe, resulting in the deaths of millions of pigs. A deep understanding of the genetic diversity and evolutionary dynamics of ASFV is necessary to effectively manage outbreaks.

View Article and Find Full Text PDF

Ubiquity of cancer across the tree of life yields opportunities to understand variation in cancer defences across species. Peto's paradox, the finding that large-bodied species do not suffer from more cancer despite having more cells at risk of oncogenic mutations compared to small species, can be explained if large size selects for better cancer defences. Since birds live longer than non-flying mammals of equivalent size, and are descendants of moderate-sized dinosaurs, we ask whether ancestral cancer defences are retained if body size shrinks in a lineage.

View Article and Find Full Text PDF

Miniature inverted-repeat transposable elements (MITEs) are short, non-autonomous class II transposable elements prevalent in eukaryotic genomes, contributing to various genomic and genic functions in plants. However, research on MITEs mainly targets a few species, limiting a comprehensive understanding and systematic comparison of MITEs in plants. Here, we developed a highly sensitive MITE annotation pipeline with a low false positive rate and applied it to 207 high-quality plant genomes.

View Article and Find Full Text PDF

A frequent goal of phage biology is to quantify how well a phage kills a population of host bacteria. Unfortunately, traditional methods to quantify phage success can be time-consuming, limiting the throughput of experiments. Here, we use theory to show how the effects of phages on their hosts can be quantified using bacterial population dynamics measured in a high-throughput microplate reader (automated spectrophotometer).

View Article and Find Full Text PDF

Animals can improve their decision-making abilities by integrating information from multiple senses, which is especially beneficial when living in fluctuating environments. However, understanding how wild predators may use multimodal sensing when hunting prey in split-second interactions remains largely unexplored. As nocturnal hunters, bats rely on echolocation to navigate and to locate evasive prey, yet they have retained functional vision, despite the associated costs.

View Article and Find Full Text PDF