Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
In this study, the effect of feeding with polymers on aerobic granular sludge (AGS) formation and stability was comprehensively investigated during 235-day operation. Results showed that the granules developed in starch-fed reactor possessed fluffy surface with overgrowth of granule size, and 60 % flocs were produced in protein-fed reactor, identifying feeding with polymers deteriorated AGS development and stability. Moreover, substrate conversion analysis revealed that ∼ 14 % of the consumed COD was recovered as storage of poly-hydroxybutyrate in polymer-fed reactor, much lower than 63.7 % in acetate-fed reactor. Extended Derjaguin-Landau-Verwey-Overbeek theory analysis showed that feeding with polymers increased the cell-cell energy barriers to 307.8 ∼ 388.8 kT, weakening the microbial aggregation capacity in AGS system. Microbial population results found that the relative abundance of Candidatus_Competibacter in protein- and starch-fed reactor displayed 0.01 ∼ 6.1 % and 0.07 ∼ 3.7 %, much lower than 81 % in acetate-fed reactor. Assembly mechanism analysis demonstrated that feeding with polymers enhanced the stochastic selection in shaping microbial assembly.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biortech.2025.132368 | DOI Listing |