Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Ultra-high field magnetic resonance imaging (MRI) offers significant advantages in terms of signal-to-noise ratio and spatial resolution. In this study, we detail the development of a multi-channel home-built MRI console operating at 14 T. We propose a hybrid analog-digital framework that shifts high-frequency radio frequency transmission and reception issues to lower frequencies, utilizing software-defined radio technology to process these low-frequency signals. Digital pre-emphasis is used in gradient calculations to counteract the effects of eddy currents during gradient switching. Our console can transmit and receive at center frequencies up to 600 MHz. The pulse programmer module achieves a timing resolution of 20 ns, while the transmitter can independently generate waveforms with varying amplitude, frequency, phase, and envelope. The receiver's dual-stage gain control provides 63 dB of adjustable range, optimizing the magnetic resonance (MR) signal's dynamic range. After frequency conversion, the MR signals are digitized with 16-bit resolution and 100 MHz sampling rate. High-resolution water phantom images are acquired on the 14 T Bruker Ascend 600 nuclear magnetic resonance magnet, demonstrating its potential for clinical research and application.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0239183DOI Listing

Publication Analysis

Top Keywords

magnetic resonance
12
mri console
8
ultra-high field
8
multi-channel mri
4
console ultra-high
4
field ultra-high
4
field magnetic
4
resonance imaging
4
imaging mri
4
mri offers
4

Similar Publications

Background And Objectives: Neuroimaging findings in immune effector cell-associated neurotoxicity syndrome (ICANS) have not been systematically described. We created the chimeric antigen receptor (CAR) T-cell Neurotoxicity Imaging Virtual Archive Library (CARNIVAL), a centralized imaging database for children and young adults receiving CAR T-cell therapy. Objectives of this study were to (1) characterize neuroimaging findings associated with ICANS and (2) determine whether specific ICANS-related neuroimaging findings are associated with individual neurologic symptoms.

View Article and Find Full Text PDF

Cardiac adipose tissue is normally present in the epicardium, but a variable amount can also be present in the myocardium, particularly in the subepicardial regions of the right ventricular anterolateral and apical regions. Pathological adipose tissue changes may occur in both ischemic (previous myocardial infarction) and nonischemic (previous myocarditis, arrhythmogenic cardiomyopathy, lipomatous hypertrophy of the interatrial septum, cardiac lipomas and liposarcomas) conditions, with or without extensive replacement-type myocardial fibrosis. Cardiac magnetic resonance is the gold standard imaging technique to characterize myocardial tissue changes and to distinguish between physiological and pathological cardiac fat deposits.

View Article and Find Full Text PDF

Aims: The aim of this observational study is to describe the use of epiduroscopy to decrease the enlargement of the ligamentum flavum (LF) in patients with spinal stenosis, as well as the selection of the appropriate patient and the safety measures that enhance procedural success.

Materials & Methods: We introduce the patient selection protocol, define the appropriate indication and the safety measures to use the epiduroscopy as a tool to decrease the size of the LF and increase space, reducing possible complications.

Results: Among patients included in the study, there were no cases of access difficulty or coccydynia, and one case of urinary incontinence occurred in a patient with Schizas grade D (very severe) stenosis.

View Article and Find Full Text PDF

Chikungunya virus (CHIKV) typically causes febrile illness and arthralgia. However, severe complications such as encephalitis, rhabdomyolysis, and multiorgan dysfunction are increasingly recognised, particularly during epidemics in endemic regions. We report a case of a 61-year old male presenting with progressive flaccid paraparesis and respiratory failure following febrile illness.

View Article and Find Full Text PDF

Importance: Recent longitudinal studies in patients with unruptured intracranial aneurysms (UIAs) suggested that aneurysm wall enhancement (AWE) on magnetic resonance imaging (MRI) predicts growth and rupture. However, because these studies were limited by small sample size and short follow-up duration, it remains unclear whether this radiological biomarker has predictive value for UIA instability.

Objective: To determine the 4-year risk of instability of UIAs with AWE and investigate whether AWE is an independent predictor of UIA instability.

View Article and Find Full Text PDF