Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Mitochondria are central to cellular bioenergetics, with the unique ability to translate and transcribe a subset of their own proteome. Given the critical importance of energy production, mitochondria seem to utilize higher-order nucleic acid structures to regulate gene expression, much like nuclei. Herein, we introduce a tailored approach to probe the formation of such structures, specifically G-quadruplexes, within intact mitochondria by using sensitivity-enhanced dynamic nuclear polarization-supported solid-state NMR (DNP-ssNMR). We acquired NMR spectra on isolated intact isotopically labeled mitochondria treated with berberine, a known high-affinity G-quadruplex stabilizer. The DNP-ssNMR data revealed spectral changes in nucleic acid sugar correlations, increased signal intensity for guanosine carbons, and enhanced Hoogsteen hydrogen bond formation, providing evidence of in vivo G-quadruplex formation in mitochondria. Together, our workflow enables the study of mitochondrial nucleic acid-ligand interactions at endogenous concentrations within biologically relevant environments by DNP-ssNMR, thus paving the way for future research into mitochondrial diseases and their potential treatments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12087828PMC
http://dx.doi.org/10.1002/anie.202424131DOI Listing

Publication Analysis

Top Keywords

solid-state nmr
8
nucleic acid
8
mitochondria
6
dnp-supported solid-state
4
nmr approach
4
approach study
4
nucleic
4
study nucleic
4
nucleic acids
4
acids situ
4

Similar Publications

The structural role of β-1,6-glucan has remained under-investigated in filamentous fungi compared to other fungal cell wall polymers, and previous studies have shown that the cell wall of the mycelium of did not contain β-1,6-glucans. In contrast, the current solid-state NMR investigations showed that the conidial cell wall contained a low amount of β-1,6-glucan. ssNMR comparisons of the and β-1,6-glucans showed they are structurally similar.

View Article and Find Full Text PDF

Unraveling boron-organic template interactions in [B, Al]-ZSM-5 zeolite using solid-state NMR spectroscopy.

Magn Reson Lett

May 2025

National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China.

Organic structure directing agents (OSDAs), such as tetrapropylammonium (TPA) cations, serve as crucial templates for the formation of zeolite frameworks. These organic molecules interact with inorganic species, guiding the assembly of the zeolite structure. In this study, we investigate the complex interplay between boron species and TPA cations during the crystallization of [B, Al]-ZSM-5 zeolites.

View Article and Find Full Text PDF

Elastomer blends, among which natural rubber (NR) and butadiene rubber (BR), are involved in many components of the automotive/tire industry. A comprehensive understanding of their mechanical behavior requires, among other features, a detailed description of the cross-link density in these mixtures. In the case of vulcanized immiscible blends, the distribution of the cross-link density within each of the NR- and BR-rich domains is key information, but difficult to determine using the conventional approaches used for one-component cross-linked elastomers.

View Article and Find Full Text PDF

Chocolates and other cocoa products represent a multibillion-dollar industry that has faced significant price increases, largely due to a surge in cocoa plant diseases linked to climate change. One potential solution for mitigating cocoa prices involves the use of cocoa butter equivalents, substitutes, or replacers. Consequently, a rapid method for simultaneously determining multiple properties of cocoa derivatives can serve as a valuable tool for research and development of new products, quality control, and regulatory agencies to ensure compliance with cocoa product standards.

View Article and Find Full Text PDF

The thermodynamic equilibrium assumption often invoked in modeling ion migration in solid-state materials remains insufficient to capture the true migration behavior of Li ions, particularly in less-crystalline superionic conductors that exhibit anomalously high Li ion conductivity. Such materials challenge classical frameworks and necessitate a lattice dynamics-based perspective that explicitly accounts for nonequilibrium phonon interactions and transient structural responses. Here, we uncover a phonon-governed Li ion migration mechanism in garnet-structured superionic conductors by comparing Ta-doped LiLaZrTaO (LLZTO4) to its undoped analogue, LiLaZrAlO (LLZO).

View Article and Find Full Text PDF