Mitochondria are central to cellular bioenergetics, with the unique ability to translate and transcribe a subset of their own proteome. Given the critical importance of energy production, mitochondria seem to utilize higher-order nucleic acid structures to regulate gene expression, much like nuclei. Herein, we introduce a tailored approach to probe the formation of such structures, specifically G-quadruplexes, within intact mitochondria by using sensitivity-enhanced dynamic nuclear polarization-supported solid-state NMR (DNP-ssNMR).
View Article and Find Full Text PDFVisualizing a protein's molecular motions has been a long standing topic of research in the biophysics community. Largely this has been done by exploiting nuclear magnetic resonance spectroscopy (NMR), and arguably no protein's molecular motions have been better characterized by NMR than that of ubiquitin (Ub), a 76 amino acid polypeptide essential in ubiquitination-a key regulatory system within cells. Herein, we discuss ubiquitin's conformational plasticity as visualized, at atomic resolution, by more than 35 years of NMR work.
View Article and Find Full Text PDFSensitivity enhanced dynamic nuclear polarization solid-state NMR is emerging as a powerful technique for probing the structural properties of conformationally homogenous and heterogenous biomolecular species irrespective of size at atomic resolution within their native environments. Herein we detail advancements that have made acquiring such data, specifically within the confines of intact bacterial and eukaryotic cell a reality and further discuss the type of structural information that can presently be garnered by the technique's exploitation. Subsequently, we discuss bottlenecks that have thus far curbed cellular DNP-ssNMR's broader adoption namely due a lack of sensitivity and spectral resolution.
View Article and Find Full Text PDFStudying the structural aspects of proteins within sub-cellular compartments is of growing interest. Dynamic nuclear polarization supported solid-state NMR (DNP-ssNMR) is uniquely suited to provide such information, but critically lacks the desired sensitivity and resolution. Here we utilize SNAPol-1, a novel biradical, to conduct DNP-ssNMR at high-magnetic fields (800 MHz/527 GHz) inside HeLa cells and isolated cell nuclei electroporated with [C,N] labeled ubiquitin.
View Article and Find Full Text PDFCellular dynamic nuclear polarization (DNP) has been an effective means of overcoming the intrinsic sensitivity limitations of solid-state nuclear magnetic resonance (ssNMR) spectroscopy, thus enabling atomic-level biomolecular characterization in native environments. Achieving DNP signal enhancement relies on doping biological preparations with biradical polarizing agents (PAs). Unfortunately, PA performance within cells is often limited by their sensitivity to the reductive nature of the cellular lumen.
View Article and Find Full Text PDFSolid-state NMR (ssNMR) spectroscopy facilitates the non-destructive characterization of structurally heterogeneous biomolecules in their native setting, for example, comprising proteins, lipids and polysaccharides. Here we demonstrate the utility of high and ultra-high field H-detected fast MAS ssNMR spectroscopy, which exhibits increased sensitivity and spectral resolution, to further elucidate the atomic-level composition and structural arrangement of the cell wall of Schizophyllum commune, a mushroom-forming fungus from the Basidiomycota phylum. These advancements allowed us to reveal that Cu(II) ions and the antifungal peptide Cathelicidin-2 mainly bind to cell wall proteins at low concentrations while glucans are targeted at high metal ion concentrations.
View Article and Find Full Text PDFDaptomycin is an important antibiotic used for treating serious infections caused by Gram-positive bacteria including methicillin-resistant (MRSA) and vancomycin-resistant enterococci. Establishing structure-activity relationships of daptomycin is important for developing new daptomycin-based antibiotics with expanded clinical applications and for tackling the ever-increasing problem of antimicrobial resistance. Toward this end, Dap-K6-E12-W13, an active analogue of daptomycin in which the uncommon amino acids in daptomycin are replaced with their common counterparts, was used as a model system for studying the effect of amino acid variation at positions 8 and 11 on in vitro biological activity against a model organism, , and calcium-dependent insertion into model membranes.
View Article and Find Full Text PDFDynamic nuclear polarization (DNP) is a powerful method to enhance the sensitivity of solid-state magnetic nuclear resonance (ssNMR) spectroscopy. However, its biomolecular applications at high magnetic fields (preferably>14 T) have so far been limited by the intrinsically low efficiency of polarizing agents and sample preparation aspects. Herein, we report a new class of trityl-nitroxide biradicals, dubbed SNAPols that combine high DNP efficiency with greatly enhanced hydrophilicity.
View Article and Find Full Text PDFMembrane proteins are vital for cell function and thus represent important drug targets. Solid-state Nuclear Magnetic Resonance (ssNMR) spectroscopy offers a unique access to probe the structure and dynamics of such proteins in biological membranes of increasing complexity. Here, we present modern solid-state NMR spectroscopy as a tool to study structure and dynamics of proteins in natural lipid membranes and at atomic scale.
View Article and Find Full Text PDFBiochim Biophys Acta Biomembr
June 2020
Daptomycin is a lipopeptide antibiotic that is important in the treatment of infections with Gram-positive bacteria. In the presence of calcium, daptomycin binds to phosphatidylglycerol in the bacterial cytoplasmic membrane and then forms oligomers that mediate its bactericidal effect. The structure of these bactericidal oligomers has not been elucidated.
View Article and Find Full Text PDFDaptomycin, a cyclic lipodepsipeptide antibiotic, has been used clinically since 2003 to treat serious infections caused by Gram-positive bacteria. Although 37 years have passed since daptomycin's discovery, its mechanism of action is still debated. In this report, the effect of replacing the ester bond with an amide bond, and overall stereochemistry, on daptomycin's biological activity was examined.
View Article and Find Full Text PDFChem Phys Lipids
November 2018
Daptomycin is a lipopeptide antibiotic that binds and permeabilizes the cell membranes of Gram-positive bacteria. Membrane permeabilization requires both calcium and phosphatidylglycerol (PG) in the target membrane, and it correlates with the formation of an oligomer that likely comprises eight subunits, which are evenly distributed between the two membrane leaflets. In both bacterial cells and model membranes, changes in the fatty acyl composition of the membrane phospholipids can prevent permeabilization.
View Article and Find Full Text PDFBiopolymers
January 2018
Daptomycin is an important Ca -dependent cyclic lipodepsipeptide antibiotic used to treat serious gram-positive infections. The search for daptomycin analogs with improved activity and their application as tools for studying its mechanism of action has prompted us to develop an entirely Fmoc solid phase approach to the synthesis of daptomycin analogs. Key to the success of this approach was the development of conditions that allowed for the formation of the ester bond on resin-bound peptides consisting of residues 1-10 and the decanoyl lipid tail.
View Article and Find Full Text PDFACS Infect Dis
November 2017
Daptomycin is a calcium-dependent lipopeptide antibiotic that is used clinically against various Gram-positive pathogens. It acts on bacterial cell membranes, whose susceptibility varies with the content of phosphatidylglycerol (PG). Some studies have reported that daptomycin permeabilizes and depolarizes bacterial cell membranes, while others have found no evidence of membrane permeabilization and thus proposed different mechanisms of antibacterial action.
View Article and Find Full Text PDF