Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Accurately detecting low concentrations of ethyl acetate (EA) holds promise for the early screening of rectal and gastric cancer. The primary challenges lie in achieving a high response at parts per billion level concentration and ensuring high selectivity. This study focuses on designing Fe-Ce-O bimetallic oxides with doping and heterogeneous interfaces, which exhibit outstanding redox properties and highly enhanced ability of the adsorption and activation of both O and EA molecules. Benefiting from the violent reaction between EA and the adsorbed oxygen species, the sensor achieves an ultrahigh ethyl acetate sensing response of more than 500,000 at 200 ppm concentration, along with an ultrafast recovery rate (<5 s). In experiments, the response can reach 4.8 even at an extremely low concentration of 10 ppb. Special attention is given to the interfacial chemical reactions through DRIFTS during the sensing process. We propose for the first time that the produced intermediate byproducts (acetaldehyde, ethyl alcohol, acetic acid, and formic acid) coresponse on this sensor, contributing to its ultrahigh sensing response. Furthermore, both EA and the byproducts are effectively classified using linear discriminant analysis with 95% accuracy. This work is expected to elucidate the interfacial sensing mechanisms, particularly the contributions of derived byproducts to the sensor's response, and to propose a novel idea for designing high-performance sensors.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acssensors.4c03249DOI Listing

Publication Analysis

Top Keywords

ethyl acetate
12
ultrahigh sensing
4
sensing performance
4
performance coresponse
4
coresponse differentiation
4
differentiation ethyl
4
acetate byproducts
4
byproducts fe-ce-o
4
fe-ce-o interfacial
4
interfacial sensor
4

Similar Publications

The Hippo pathway and its transcription co-activator YAP play a critical role in the regulation of cell proliferation, apoptosis and the control of organ size. In the past several years, YAP has been found to be expressed in various human cancers, however, its expression in Nasopharyngeal Carcinoma (NPC) remains unstudied. In this report, we found that YAP was overexpressed in human NPC tissues, and its expression was also significantly higher in five NPC cell lines when compared with the nasopharyngeal epithelial cell line NP69 (P < 0.

View Article and Find Full Text PDF

Strategies have been employed to address antimalarial drug resistance, including the exploration of new therapeutic targets. In this study, the stem bark of Dalbergia miscolobium was investigated using in vitro assays against Plasmodium falciparum and pyruvate kinase II (PyrKII), an essential enzyme for parasite development. Compounds were dereplicated from ethanolic extract (IC  = 9 µg/mL) using LC-HRMS, revealing active constituents: procyanidin A1 (2), biochanin (5) and formononetin (7).

View Article and Find Full Text PDF

The esterase gene encoding EstJN1 of Clostridium butyricum, which was isolated from the pit cellar of Chinese liquor facility, was expressed. EstJN1 was identified as a novel GDSL esterase belonging to family II. The enzyme demonstrated a marked substrate preference for p-nitrophenyl butyrate, with optimal activity at a temperature of 40 ℃ and a pH of 7.

View Article and Find Full Text PDF

Solvent attenuation of dispersion interactions was quantified using a new class of rigid intramolecular CH-π molecular balances. These balances incorporate small, two-carbon CH donors that minimize solvophobic effects and isolate the dispersion component. Folding energies (Δ ) were measured across eight solvents: cyclohexane, toluene, chloroform, ethyl acetate, acetone, acetonitrile, DMSO, and methanol.

View Article and Find Full Text PDF

Tomato Fusarium wilt, caused by the soil-borne pathogen Fusarium oxysporum f. sp. lycopersici (Fol), poses a significant threat to global tomato production, resulting in severe losses in both yield and quality.

View Article and Find Full Text PDF