98%
921
2 minutes
20
Stereoselective constructions of 1,2-cis-glycosidic bonds are long-standing challenges in chemical synthesis. In particular, achieving highly stereoselective 1,2-cis-xylosylation remains a difficult task in carbohydrates chemistry. Here, we report that highly stereoselective 1,2-cis-xylosylation could be achieved via synergistic combinations of reagent modulation, remote participation, and electron-withdrawing effects. A variety of α-xylosides motifs have been effectively prepared by this 1,2-cis-xylosylation protocol, including hemicellulose xyloglucan, xyloglucosyl trisaccharide motif from mammalian cells, core M3 matriglycan motif, and even α-(1→3)-xylosides up to 12-mer. Furthermore, DFT calculations provided the origins of this stereoselective and synergistic 1,2-cis-xylosylation through S1 and S2 pathways.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202424048 | DOI Listing |
Org Lett
September 2025
School of Chemistry and Chemical Engineering, Hefei University of Technology and Anhui Province Key Laboratory of Value-Added Catalytic Conversion and Reaction Engineering, Hefei 230009, China.
Under visible-light photocatalysis facilitated by cobalt coordination, a highly regio- and stereoselective cycloisomerization reaction of 1,6-enynes has been developed. This method enables the efficient synthesis of various skipped 1,4-diene products with excellent stereoselectivity, using commercially available cobalt catalysts, ligands, and reagents. Notably, the reaction exhibits remarkable regioselectivity (>20:1), stereoselectivity (/ > 20:1), and high yields (58-92%) under mild conditions, along with a broad substrate scope and good functional group tolerance.
View Article and Find Full Text PDFPLoS One
September 2025
Department of Molecular Biology and Genetics, Faculty of Science and Letters, Istanbul Technical University, Istanbul, Türkiye.
Cytochrome P450 enzymes (P450s), particularly those of microbial origin, are highly versatile biocatalysts capable of catalyzing a broad range of regio- and stere-oselective reactions. P450s derived from extremophiles are of particular interest due to their potential tolerance to high temperature, salinity, and acidity. This study aimed to identify and classify novel microbial P450 enzymes from extreme environments across Türkiye, including hydrothermal springs, hypersaline lakes, and an acid-mine drainage site.
View Article and Find Full Text PDFOrg Lett
September 2025
State Key Laboratory of Chemistry for NBC Hazards Protection, Beijing 102205, China.
Optically active α-aminophosphonic acids are unique analogues of α-amino acids, and numerous synthetic methods have been developed. Herein, we present a highly diastereoselective α-azidation approach to the CAMDOL-derived phosphonates, enabling ready access to 27 diverse α-azidophosphonates with defined chirality in up to 85% yield and more than 99:1 dr. Late-stage transformations through the Staudinger reaction or click reaction efficiently delivered the related pharmacological α-aminophosphonic acids or the unique α-triazolylphosphonate derivative, respectively.
View Article and Find Full Text PDFJ Am Chem Soc
August 2025
Department of Chemistry, University of Washington, Seattle, Washington 98195, United States.
Alkenes make up an important class of compounds prevalent in biologically active molecules and synthetic intermediates. Their significance has driven the development of robust synthetic methods that allow the efficient and selective production of mono- and disubstituted alkenes. However, the selective synthesis of more highly substituted alkenes from readily accessible starting materials remains a significant synthetic challenge.
View Article and Find Full Text PDFMicroorganisms
July 2025
School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
Mandelic acid (MA), as an important chiral aromatic hydroxy acid, is widely used in medicine, the chemical industry, and agriculture. With the continuous growth of market demand, traditional chemical synthesis methods are increasingly inadequate to meet the requirements of green and sustainable development due to issues such as complex processes, poor stereoselectivity, numerous byproducts, and serious environmental pollution. MA synthesis strategies based on biocatalytic technology have become a research hotspot due to their high efficiency, environmental friendliness, and excellent stereoselectivity.
View Article and Find Full Text PDF