Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The thermal tolerance of species may be exceeded by the predicted temperature increases and thus contribute to species extinction. However, the impact of temperature increases is thought to vary between climate regions and across latitudes. Here, we aim to establish the vulnerability of an ectothermic insect to a warming climate by estimating the thermal safety margin in damselflies. We measured the critical thermal maximum (CTmax) along a latitudinal gradient of 17° from 21 populations along the eastern coast of Australia. Our results showed that damselflies inhabiting tropical regions had higher CTmax than temperate damselflies. CTmax increased with increasing mean temperature and decreasing latitude. We further found a positive correlation between damselfly parasite number and temperature. Body size, body condition and sex had no impact on CTmax. Our projections showed that the damselfly thermal safety margin will be narrower in the tropics compared with temperate regions under a predicted 2.6°C annual mean temperature (future projected - current) increase for the years 2061-2080. Therefore, damselflies in the tropics are likely to be more vulnerable to climate change-driven extinction even though they have a relatively higher CTmax. Nevertheless, behaviour, temperature adaptation and thermal plasticity might mitigate predicted vulnerability.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11879627PMC
http://dx.doi.org/10.1098/rsos.241765DOI Listing

Publication Analysis

Top Keywords

thermal safety
12
safety margin
12
latitudinal gradient
8
temperature increases
8
higher ctmax
8
thermal
6
temperature
6
ctmax
5
gradient thermal
4
margin australian
4

Similar Publications

Dual Lithium Salt Derived Favorable Interface Layer Enables High-Performance Polycarbonate-Based Composite Electrolytes for Stable and Safe Solid Lithium Metal Batteries.

ACS Appl Mater Interfaces

September 2025

Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China.

Developing solid electrolytes with high ionic conductivity, a high voltage window, low flammability, and excellent interface compatibilities with both the anode and cathode for lithium-metal batteries is still a great challenge but highly desirable. Herein, we achieve this target through an in situ copolymerization of vinyl ethylene carbonate (VEC) together with acrylonitrile (AN) under fitting ratios inside a porous polyacrylonitrile (PAN) fiber membrane doped with flame-retardant decabromodiphenyl ethane (DBDPE) molecules. The received fiber-reinforced polycarbonate-based composite electrolyte with an ultrathin thickness of 13 μm exhibits good internal interfacial compatibility because of the same AN structure and superior flame-retardant performance due to the doped DBDPE molecules.

View Article and Find Full Text PDF

Objective: This study aimed to evaluate the efficacy and safety of US-guided thermal ablation (TA) for solitary papillary thyroid carcinoma (PTC) in elderly patients.

Materials And Methods: This retrospective study included 91 elderly patients with solitary PTC who were treated with TA. The primary outcome was disease progression.

View Article and Find Full Text PDF

Combination of Si@UiO-66-NH paper-based thin film microextraction with direct solid-state spectrofluorimetry for extraction and determination of estradiol in urine.

Anal Chim Acta

November 2025

Department of Analytical Chemistry, Faculty of Chemistry, Alzahra University, Vanak, Tehran, Iran; Analytical and Bioanalytical Research Centre, Alzahra University, Vanak, Tehran, Iran. Electronic address:

Background: Determination of the estradiol hormone in urine is crucial for evaluating congenital adrenal hyperplasia, certain hormone-producing ovarian tumors, polycystic ovary syndrome, liver disease, pregnancy, and infertility. On the other hand, steroid hormones can have destructive effects on the environment, animals, and the endocrine system of humans. Consequently, accurately measuring this hormone's concentration in trace amounts is essential for environmental safety and human health.

View Article and Find Full Text PDF

7-Ketocholesterol as a Critical Oxysterol: Impact on Human Health and Safety in Food Systems.

J Steroid Biochem Mol Biol

September 2025

Biochemistry and Phytochemistry Research Division, Jubilee Centre for Medical Research, Thrissur, Kerala, 680005, India. Electronic address:

7-Ketocholesterol (7-KC) is a biologically active oxysterol formed through the oxidation of cholesterol, predominantly under conditions of oxidative stress. It is generated both enzymatically in specific tissues such as the brain and liver, and non-enzymatically via reactive oxygen species (ROS), especially in aging tissues and heat-processed animal-derived foods. 7-KC exerts multifaceted effects on human health, extending beyond lipid metabolism to disrupt glucose and amino acid utilization, impair mitochondrial function, and provoke endoplasmic reticulum (ER) stress.

View Article and Find Full Text PDF

Fe-X (X=C, P, S) atom pair-decorated g-CN monolayers for sensing toxic thermal runaway gases in lithium-ion batteries: A DFT Study.

Environ Res

September 2025

Jiangxi Provincial Key Laboratory of High-Performance Steel and Iron Alloy Materials,Jiangxi University of Science and Technology, Ganzhou 34100, China; School of Metallurgy Engineering, Jiangxi University of Science and Technology, Ganzhou 34100, China. Electronic address:

The thermal runaway of lithium-ion batteries (LIBs) releases a mixture of toxic and explosive gases, posing severe safety risks. High-performance sensors are critical for the early detection of these thermal runaway gases (TRGs) to prevent accident escalation. Herein, we systematically investigate Fe-X (X=C, P, S) atomic pair-modified g-CN (FCN, FPN, FSN) monolayers as potential sensing materials for six TRGs (CO, CO, H, CH, CH, and CH) using first-principles calculations.

View Article and Find Full Text PDF