98%
921
2 minutes
20
The reduction of As(V) to As(III) has been proposed as an undesirable process, increasing the mobility and toxicity of arsenic. Although most studies revealed that As(V) reduction occurs in the aqueous phase, it remains unclear whether abiotic As(V) reduction driven by minerals in drought environments also exists. In this study, we examined the transformation of As(V) to As(III) mediated by ferrihydrite during drying processes using high-resolution X-ray photoelectron spectroscopy (XPS) and X-ray absorption near edge structure (XANES) spectroscopy analyses. The results revealed that nearly 40.8% of ferrihydrite-sorbed As(V) was transformed to As(III) after placing the As(V)-adsorbed ferrihydrite solids in a drought-tolerant environment for 7 days. As(V) reduction occurred under both oxic and anoxic conditions, with the reduction rate being higher in an anoxic atmosphere than in oxygen and air. Chemical analysis revealed the presence of structural Fe(II) in ferrihydrite, which was attributed to the abundance of oxygen vacancy clusters, as evidenced by positron annihilation lifetime (PAL) analysis. Fe L-edge XANES analysis and DFT calculations demonstrated that structural Fe(II) in dried ferrihydrite played a vital role in As(V) reduction, inducing electron transfer from Fe to As atoms. The findings of this study highlight a potentially important but long-overlooked As(V) reduction pathway at mineral surfaces under drought conditions in dried soils.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.est.4c10674 | DOI Listing |
Ecotoxicol Environ Saf
September 2025
Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Department of Applied Biology and Chemistry, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Research In
This study aimed to elucidate the effects of arsenic species [As(III)/As(V)] and cadmium [Cd(II)] on nitrification and nitrogen fixation in soybean (Glycine max (L.) Merrill) cultivation, and to identify nitrogen cycle disruption mechanisms in realistic soil environments with a focus on soil-metal-plant-microbe interactions. We examined heavy metal(loid)s uptake in plant tissues, changes in nitrogen species in porewater, nitrogenase activity, the contents of essential trace metals (Mo and Fe) in nitrogenase, and nitrogen-related microbial communities.
View Article and Find Full Text PDFWater Res
August 2025
The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325035, PR China. Electronic address:
Constructed wetlands (CWs) face dual challenges of arsenic contamination and greenhouse gas (GHG) emissions, particularly concerning the competing processes of As(III) immobilization and methane-dependent As(V) reduction (AOM-AsR). To address this dilemma, we developed a novel microbial-nitrate-zero valent iron/manganese synergy (MNZS) system that establishes dynamic redox gradients through Fe/Mn-mediated electron flux regulation. The MNZS mechanism leverages zero valent iron/manganese (ZVI/ZVM) oxidation to create oxygen-depleted microzones, generating bioavailable Fe(II)/Mn(II) species while initiating microbial nitrate-reducing-coupled Fe(II)/Mn(II) oxidation (NRFO/NRMO).
View Article and Find Full Text PDFEcotoxicol Environ Saf
August 2025
Ningxia Environment Monitoring Center, Yinchuan 750000, China.
This study investigated bacterial community structure in surface water, sediment, and riparian soil habitats within the Qingshui River Basin in Ningxia, China, across normal, wet, and dry periods using 16S rDNA sequencing. Our findings revealed habitat-specific microbial dynamics, with surface water exhibiting significantly lower α-diversity compared to sediments and riparian soils (e.g.
View Article and Find Full Text PDFJ Environ Sci (China)
December 2025
State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China. Electronic address:
Co-contamination of chlorinated hydrocarbons and arsenic is frequently observed in the chemically contaminated sites and their surroundings in China. However, the interaction between these complex contaminants in soil remains is unclear. This study collected ten background soils with varying properties from various regions throughout China, and investigated the sorption and desorption process of trichloroethylene (TCE) in the exogenous arsenate (As(V)) contaminated soils.
View Article and Find Full Text PDFChem Pharm Bull (Tokyo)
August 2025
Department of Life Science, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan.
Bisenarsan is an organoarsenic natural product identified from actinomycetes and a derivative of (2-hydroxyethyl)arsonic acid (2-HEA) esterified with 2,4,6-trimethyl-2-nonenoic acid (2,4,6-TMNA). Our previous study suggested that bisenarsan is biosynthesized from arsenate [As(V)] via arsonoacetaldehyde (AnAA). In contrast, the late-stage biosynthetic steps from AnAA to bisenarsan and the roles of transporter genes within the biosynthetic gene clusters (BGCs) of bisenarsan remain unclear.
View Article and Find Full Text PDF