Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Many regulatory factors impact the expression of individual genes including, but not limited, to microRNA, long non-coding RNA (lncRNA), transcription factors (TFs), methylation, copy number variation (CNV), and single-nucleotide polymorphisms (SNPs). While each mechanism can influence gene expression substantially, the relative importance of each mechanism at the level of individual genes and tissues is poorly understood. Here, we present the integrative Models of Estimated gene expression (iModEst), which details the relative contribution of different regulators to the gene expression of 16,000 genes and 21 tissues within The Cancer Genome Atlas (TCGA). Specifically, we derive predictive models of gene expression using tumour data and test their predictive accuracy in cancerous and tumour-adjacent tissues. Our models can explain up to 70% of the variance in gene expression across 43% of the genes within both tumour and tumour-adjacent tissues. We confirm that TF expression best predicts gene expression in both tumour and tumour-adjacent tissue whereas methylation predictive models in tumour tissues does not transfer well to tumour adjacent tissues. We find new patterns and recapitulate previously reported relationships between regulator and gene-expression, such as CNV-predicted expression and SNP-predicted expression. Together, iModEst offers an interactive, comprehensive atlas of individual regulator-gene-tissue expression relationships as well as relationships between regulators.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11879402PMC
http://dx.doi.org/10.1093/nargab/lqaf011DOI Listing

Publication Analysis

Top Keywords

gene expression
28
expression
12
genes tissues
12
individual genes
8
expression imodest
8
predictive models
8
expression tumour
8
tumour-adjacent tissues
8
tumour tumour-adjacent
8
gene
7

Similar Publications

Gene dysregulation impairs placental angiogenesis in allogeneic pig pregnancies.

Anim Reprod Sci

September 2025

Department of Biomedical & Clinical Sciences (BKV), BKH/Obstetrics & Gynecology, Faculty of Medicine and Health Sciences, Linköping University, Linköping SE-58185, Sweden.

Embryo transfer (ET) is a valuable reproductive technology in pigs, albeit its efficiency remains significantly lower than that of natural mating or artificial insemination (AI), owing to high embryonic death rates. Critical for embryo survival and pregnancy success is the placenta, which supports conceptus development through nutrient exchange, hormone production, and immune modulation. Alterations in placental development and function may therefore underlie the reduced efficiency of ET.

View Article and Find Full Text PDF

The ability of parasitoid wasps to precisely locate hosts in complex environments is a key factor in suppressing pest populations. Chemical communication plays an essential role in mediating insect behaviors such as locating food sources, hosts, and mates. Odorant receptors (ORs) are the key connection between external odors and olfactory nerves.

View Article and Find Full Text PDF

Background: The expression and clinical correlation of BRAFV600E mutation and programmed cell death-1 ligand 1 (PD-L1) in children with Langerhans cell histiocytosis (LCH) have been reported, but the conclusions of previous studies are inconsistent. In addition, it has been reported that elevated cathepsin S (CTSS) expression is associated with various cancers. However, there is currently no research on the correlation between CTSS and LCH.

View Article and Find Full Text PDF

Salt stress impairs photosynthetic efficiency and consequently reduces the growth, development, and grain yield of crop plants. The formation of hydrophobic barriers in the root endodermis, including the suberin lamellae and Casparian strips, is a key adaptive strategy for salt stress tolerance. In this study, we identified the role of the rice NAC transcription factor, ONAC005, in salt stress tolerance.

View Article and Find Full Text PDF

Transcutaneous devices such as dental implants frequently fail due to infections at their interfaces with epithelial tissues. These infections are facilitated by the lack of integration between the devices and the surrounding soft tissues. This study aims to improve epithelial integration through surface modification of a transcutaneous implant material (polyetheretherketone (PEEK)).

View Article and Find Full Text PDF