Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Here we propose an eco-friendly hydrothermal approach to synthesise fluorescent L-cysteine capped zirconium oxide quantum dots (L-Cys-ZrO QDs). The UV-Vis absorption, PL-emission, pH independence, size, functional group attached over surface QDs, binding energy, and stability of QDs in aqueous solvent were systematically studied. The TEM results revealed the mean particle size ∼5.7 nm of QDs. The synthesised QDs have UV-Vis absorption peaks at 320 nm, 265 nm, and 245 nm with PL emission from 360 nm to 500 nm and have a quantum yield ∼3.6%. The functional groups attached over surface of QDs such as -CO, -NH, SO etc. were confirmed by FT-IR spectrum which were supported by XPS spectrum analysis. An in-vitro optical bio-imaging method was employed, focusing on cancer cell line such as HeLa Cells as a model cell. Cytotoxicity is analysed using MTT assay showing that QDs are biocompatible in nature. The photoluminescence properties of the synthesized L-Cys-ZrO QDs were examined on the HeLa cells under green laser. The quantum dots proved to be effective labels for bioimaging as evidenced by strong emission when observed under a confocal fluorescence microscope by green laser.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10895-025-04216-yDOI Listing

Publication Analysis

Top Keywords

quantum dots
12
hela cells
12
l-cysteine capped
8
capped zirconium
8
zirconium oxide
8
oxide quantum
8
qds
8
l-cys-zro qds
8
qds uv-vis
8
uv-vis absorption
8

Similar Publications

High Current Gain Endowed by Heterojunction Engineering Coupling Interfacial Molecular Modulation: A Low-Ascorbic Acid-Dependent Organic Photoelectrochemical Transistor Aptasensing Platform.

Anal Chem

September 2025

School of Agricultural Engineering, Key Laboratory of Modern Agricultural Equipment and Technology (Ministry of Education), Jiangsu University, Zhenjiang, Jiangsu 212013, PR China.

To balance the "detection sensitivity" and "device stability" of the organic photoelectrochemical transistor (OPECT) aptasensors, it has become an urgent challenge for achieving effective signal modulation under low ascorbic acid (AA) conditions. To address this, our work proposed a collaborative optimization strategy by coupling heterojunction engineering with interfacial molecular modulation, to endow a high current gain of OPECT with low-AA -dependence. First, a CdZnS-SnInS heterojunction gate was constructed by in situ growth of CdZnS quantum dots (QDs) on SnInS nanoflowers, which enhanced the light trapping ability and photoelectric conversion efficiency of the photoactive gate.

View Article and Find Full Text PDF

Photothermal/GSH-dual-responsive organic quantum dots enabling traceable DNA delivery.

Int J Biol Macromol

September 2025

School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430023, China. Electronic address:

Quantum dots, with their superior intrinsic fluorescence and photostability, are emerging as a promising option for cancer gene therapy, diagnosis, and imaging. However, low gene delivery efficiency, insufficient targeting, and responsiveness remain challenges. To address these issues, PEI-based carbon quantum dots (CPNCs) were constructed by crosslinking polyethylenimine quantum dots (PQDs) with carbon quantum dots (CQDs) via disulfide bonds.

View Article and Find Full Text PDF

Superparamagnetic iron oxide nanoparticles - From synthesis to nanomedicine.

Biochem Biophys Res Commun

August 2025

Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA, 02139, USA. Electronic address:

Superparamagnetic iron oxide nanoparticles (SPIONs) have emerged as powerful tools in nanomedicine owing to their heavy-metal-free composition, distinct magnetic properties, biocompatibility, and customizable surface chemistry. While traditionally employed as T-weighted MRI contrast agents, recent innovations have enabled the development of ultra-small SPIONs-such as exceedingly small SPIONs (ES-SPIONs) and single-nanometer iron oxide nanoparticles (SNIOs)-that offer T-weighted MRI capabilities, which are favored by radiologists for their superior anatomical clarity. This review highlights the synthesis of monodisperse SPIONs via thermal decomposition and controlled oxidation, as well as their functionalization with zwitterionic dopamine sulfonate (ZDS) ligands, which confer colloidal stability, minimal protein adsorption, and efficient renal clearance.

View Article and Find Full Text PDF

Proposed Five-Electron Charge Quadrupole Qubit.

Phys Rev Lett

August 2025

University of Maryland Baltimore County, Department of Physics, Baltimore, Maryland 21250, USA.

A charge qubit couples to environmental electric field fluctuations through its dipole moment, resulting in fast decoherence. We propose the p-orbital (pO) qubit, formed by the single-electron, p-like valence states of a five-electron Si quantum dot, which couples to charge noise through the quadrupole moment. We demonstrate that the pO qubit offers distinct advantages in quality factor, gate speed, readout, and size.

View Article and Find Full Text PDF

This review delivers a focused and critical evaluation of recent progress in the green synthesis of carbon quantum dots (CQDs), with particular attention to state-of-the-art approaches utilizing renewable biomass as precursors. The main objective is to systematically examine innovative, environmentally friendly methods and clarify their direct influence on the core properties and photocatalytic performance of CQDs. The novelty of this review stems from its comprehensive comparison of green synthetic pathways, revealing how specific processes determine key structural, optical, and electronic attributes of the resulting CQDs.

View Article and Find Full Text PDF