Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Recent advances in prototypical learning have shown remarkable potential to provide useful decision interpretations associating activation maps and predictions with class-specific training prototypes. Such prototypical learning has been well-studied for various single-label diseases, but for quite relevant and more challenging multi-label diagnosis, where multiple diseases are often concurrent within an image, existing prototypical learning models struggle to obtain meaningful activation maps and effective class prototypes due to the entanglement of the multiple diseases. In this paper, we present a novel Cross- and Intra-image Prototypical Learning (CIPL) framework, for accurate multi-label disease diagnosis and interpretation from medical images. CIPL takes advantage of common cross-image semantics to disentangle the multiple diseases when learning the prototypes, allowing a comprehensive understanding of complicated pathological lesions. Furthermore, we propose a new two-level alignment-based regularisation strategy that effectively leverages consistent intra-image information to enhance interpretation robustness and predictive performance. Extensive experiments show that our CIPL attains the state-of-the-art (SOTA) classification accuracy in two public multi-label benchmarks of disease diagnosis: thoracic radiography and fundus images. Quantitative interpretability results show that CIPL also has superiority in weakly-supervised thoracic disease localisation over other leading saliency- and prototype-based explanation methods.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TMI.2025.3541830DOI Listing

Publication Analysis

Top Keywords

prototypical learning
20
disease diagnosis
12
multiple diseases
12
cross- intra-image
8
intra-image prototypical
8
multi-label disease
8
diagnosis interpretation
8
activation maps
8
learning
6
prototypical
5

Similar Publications

Large-margin Softmax loss using synthetic virtual class.

Neural Netw

September 2025

School of Cyberspace Security (School of Cryptology), Hainan University, No. 58, Renmin Avenue, Haikou, 570228, Hainan, China. Electronic address:

The primary challenge of large-margin learning lies in designing classifiers with strong discriminative power. Although existing large margin methods have achieved success in various classification tasks, they often suffer from weak task generalization and imbalanced handling of easy and hard samples. In this paper, we propose a margin adaptive synthetic virtual Softmax loss (SV-Softmax), which dynamically generates virtual prototypes by synthesizing embedded features and their corresponding prototypes.

View Article and Find Full Text PDF

Atomic resolution scanning probe microscopy, and in particular scanning tunnelling microscopy (STM) allows for high-spatial-resolution imaging and also spectroscopic analysis of small organic molecules. However, preparation and characterisation of the probe apex in situ by a human operator is one of the major barriers to high-throughput experimentation and to reproducibility between experiments. Characterisation of the probe apex is usually accomplished via assessment of the imaging quality on the target molecule and also the characteristics of the scanning tunnelling spectra (STS) on clean metal surfaces.

View Article and Find Full Text PDF

Drug-target interaction (DTI) identification is of great significance in drug development in various areas, such as drug repositioning and potential drug side effects. Although a great variety of computational methods have been proposed for DTI prediction, it is still a challenge in the face of sparsely correlated drugs or targets. To address the impact of data sparsity on the model, we propose a multi-view neighborhood-enhanced graph contrastive learning approach (MneGCL), which is based on graph clustering according to the adjacency relationship in various similarity networks between drugs or targets, to fully exploit the information of drugs and targets with few corrections.

View Article and Find Full Text PDF

The brain-computer interface (BCI) system facilitates efficient communication and control, with Electroencephalography (EEG) signals as a vital component. Traditional EEG signal classification, based on static deeplearning models, presents a challenge when new classes of the subject's brain activity emerge. The goal is to develop a model that can recognize new few-shot classes while preserving its ability to discriminate between existing ones.

View Article and Find Full Text PDF

Epilepsy affects around 1% of the global population and often requires long-term treatment with antiseizure medications (ASMs). However, the current treatment strategy is based on clinical acumen and trial and error, resulting in only about 50% of patients remaining seizure-free for at least 12 months with first-line ASMs. Valproic acid (VPA) is a commonly prescribed first-line ASM, yet <50% of patients experience inadequate seizure control (ISC) or unacceptable adverse reactions (UARs), necessitating discontinuation.

View Article and Find Full Text PDF