Multifunctional noncoding regions in the mammarenavirus genome.

Virology

Laboratory of Emerging Viral Diseases, International Research Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan; Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka, Japan; Center for Advanced Modalities

Published: April 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Mammarenaviruses often cause long-term asymptomatic chronic infections in their natural hosts, primarily rodents, and include several human pathogens responsible for diseases ranging from mild febrile illnesses to life-threatening hemorrhagic fever. Mammarenaviruses encode two genes in each segment of their bisegmented RNA genome, with ambisense polarity. The multifunctionality of each gene product supports the optimal propagation of the virus. Moreover, the noncoding regions of the mammarenaviral genome have been shown to have multiple functions, beyond the control of viral transcription and replication. For instance, the noncoding intergenic region (IGR) is integral to the posttranscriptional regulation of viral protein expression. This mechanism underlies the efficient multiplication of the virus, which utilizes an ambisense coding strategy. Further clarification of the multifunctionality of the noncoding regions of the mammarenaviral genome will extend our understanding of the complex biology of these simple viruses and provide the basis for the development of novel medical countermeasures.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.virol.2025.110464DOI Listing

Publication Analysis

Top Keywords

noncoding regions
12
regions mammarenaviral
8
mammarenaviral genome
8
multifunctional noncoding
4
regions mammarenavirus
4
genome
4
mammarenavirus genome
4
genome mammarenaviruses
4
mammarenaviruses long-term
4
long-term asymptomatic
4

Similar Publications

Crystal structures of distinct parallel and antiparallel DNA G-quadruplexes reveal structural polymorphism in C9orf72 G4C2 repeats.

Nucleic Acids Res

September 2025

State Key Laboratory of Vaccines for Infectious Diseases, School of Public Health, Xiamen University, Xiamen 361102, Fujian, China.

The abnormal expansion of GGGGCC (G4C2) repeats in the noncoding region of the C9orf72 gene is a major genetic cause of two devastating neurodegenerative disorders, amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). These G4C2 repeats are known to form G-quadruplex (G4) structures, which are hypothesized to contribute to disease pathogenesis. Here, we demonstrated that four DNA G4C2 repeats can fold into two structurally distinct G4 conformations: a parallel and an antiparallel topology.

View Article and Find Full Text PDF

Genome imbalance, resulting from varying the dosage of individual chromosomes (aneuploidy), has a more detrimental effect than changes in complete sets of chromosomes (haploidy/polyploidy). This imbalance is likely due to disruptions in stoichiometry and interactions among macromolecular assemblies. Previous research has shown that aneuploidy causes global modulation of protein-coding genes (PCGs), microRNAs, and transposable elements (TEs), affecting both the varied chromosome (cis-located) and unvaried genome regions (trans-located) across various taxa.

View Article and Find Full Text PDF

RNA G-quadruplexes (rG4s) are emerging as vital structural elements involved in processes like gene regulation, translation, and genome stability. Found in untranslated regions of messenger RNAs (mRNAs), they influence translation efficiency and mRNA localization. Additionally, rG4s of long noncoding RNAs and telomeric RNA play roles in RNA processing and cellular aging.

View Article and Find Full Text PDF

Tachinid flies act as key biological vectors in elucidating plant-insect-microbe dynamic interactions. We report the mitochondrial genome sequence of from China. The mitogenome spans 14,775 base pairs in length, with a GC content of 21.

View Article and Find Full Text PDF

Latitudinal-environmental variations driving the local adaptation of stocks along the Chinese coast.

Mar Life Sci Technol

August 2025

Laboratory of Marine Organism Taxonomy and Phylogeny, Qingdao Key Laboratory of Marine Biodiversity and Conservation, and The Key Laboratory of Experimental Marine Biology, Centre for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266000 China.

Unlabelled: The distribution of (Euphrasen, 1788) spans a pronounced latitudinal-environmental gradient from the subtropical to the subpolar zones. The species is reported to have multiple stocks along coastal China, exhibiting different spawning behaviors and habitat preferences. Such ecological variations might imply potential genetic divergence and local adaptation.

View Article and Find Full Text PDF