98%
921
2 minutes
20
Sex pheromones, typically released by females are crucial signals for the reductive biology of insects, primarily detected by sex pheromone receptors (PRs). A clade of PRs in three mirid bugs, Apolygus lucorum, Adelphocoris lineolatus, and Adelphocoris suturalis, has been found to respond to pheromones, (E)-2-hexenyl butyrate (E2HB) and hexyl butyrate (HB), with higher sensitivity to E2HB. In this study, we aimed to identify PRs responsible for the other two pheromone components, HB and (E)-4-oxo-2-hexenal (4-OHE), by using a combination of phylogenetic analyses, sequence similarity analyses, and in vitro functional studies. As a result, five new candidate PRs (AlucOR34, AlinOR9, AlinOR10, AsutOR9, and AsutOR10) positioned outside of the previously known PR clade were identified. All five PRs were found to respond to both E2HB and HB, with some PRs exhibiting a significant and sensitive binding to HB. However, PRs for 4-OHE remains unidentified. Overall, our study suggests that mirid bugs have evolved two distinct lineages of PRs with similar response profiles. This research offers valuable insights into sex pheromone recognition within the peripheral olfactory system and contributes to the identification of PRs in mirid bugs, providing new targets for developing the behavioral regulators for these insects.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.pestbp.2024.106277 | DOI Listing |
Arch Insect Biochem Physiol
July 2025
Tobacco Research Institute of Guangdong Province, Shaoguan, China.
Odorant-binding proteins (OBPs) and chemosensory proteins (CSPs) are essential for host-seeking behaviors in herbivorous and predatory insects. However, limited studies have examined differences in the OBP and CSP profiles between herbivores and predators. Mirid bugs, which ancestrally were predatory, provide an ideal model to investigate these differences because some of mirid species have evolved to develop herbivorous capacities.
View Article and Find Full Text PDFArch Insect Biochem Physiol
August 2025
USDA ARS, U.S. Arid Land Agricultural Research Center, Maricopa, Arizona, USA.
Mirid plant bugs (Hemiptera: Miridae), including Lygus hesperus (western tarnished plant bug), are key pests of numerous agricultural crops. While management of this pest relies heavily on chemical insecticides, the evolution of resistance and environmental concerns underscore the need for new and more effective approaches. Genetic-based strategies that target male fertiliy are currently being evaluated for population suppression.
View Article and Find Full Text PDFPestic Biochem Physiol
March 2025
State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China. Electronic address:
Sex pheromones, typically released by females are crucial signals for the reductive biology of insects, primarily detected by sex pheromone receptors (PRs). A clade of PRs in three mirid bugs, Apolygus lucorum, Adelphocoris lineolatus, and Adelphocoris suturalis, has been found to respond to pheromones, (E)-2-hexenyl butyrate (E2HB) and hexyl butyrate (HB), with higher sensitivity to E2HB. In this study, we aimed to identify PRs responsible for the other two pheromone components, HB and (E)-4-oxo-2-hexenal (4-OHE), by using a combination of phylogenetic analyses, sequence similarity analyses, and in vitro functional studies.
View Article and Find Full Text PDFJ Econ Entomol
February 2025
Department of Environmental Science, Policy and Management, University of California, Berkeley, CA 94720, USA.
The mirid bugs Lygus hesperus (Knight) and L. elisus (van Duzee) are key pests of forage, fiber, and fruit crops. Our goals were to identify pheromone components produced by females of both species and to develop practical pheromone dispensers for use in monitoring these pests.
View Article and Find Full Text PDFJ Adv Res
May 2025
State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China. Electronic address:
Introduction: As an important herbivore-induced plant volatile, (3E)-4,8-dimethyl-1,3,7-nonatriene (DMNT) is known for its defensive role against multiple insect pests, including attracting natural enemies. A terpene synthase (GhTPS14) and two cytochrome P450 (GhCYP82L1, GhCYP82L2) enzymes are involved in the de novo synthesis of DMNT in cotton. We conducted a study to test the potential of manipulating DMNT-synthesizing enzymes to enhance plant resistance to insects.
View Article and Find Full Text PDF