Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The genus , with its intricate floral elements, pronounced endemicity, and patchy distribution, evolves a rich diversity of morphological forms and a wide variety of species while causing an indistinctness in the classification of its species. To elucidate the phylogenetic relationships among species and enhance their taxonomic classification by DNA barcoding, this study conducted amplification and sequence results of nuclear (ITS) and chloroplast genes (, , , ) with phenotypic genetic diversity analysis, genetic distance analysis, and phylogenetic analysis from 48 samples of species. The comparison of genetic distance variations showed that , ITS + , and ITS + + exhibit minimal overlap and significant genetic variation within species. The phylogenetic analysis indicated that the combination, ITS + + , has the highest identification rate. Notably, both the phylogenetic analysis and the genetic diversity analysis of phenotypic traits consistently indicated a clear divergence between epiphytic and terrestrial orchids, with epiphytic orchids forming a distinct clade. This provides reference evidence for studying the ecological adaptations and evolutionary differences between epiphytic and terrestrial orchids, as well as a scientific basis for the classification and identification, germplasm conservation, resource utilization, and phylogenetic evolution of orchids.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11859091PMC
http://dx.doi.org/10.3390/plants14040619DOI Listing

Publication Analysis

Top Keywords

phylogenetic analysis
12
dna barcoding
8
genetic diversity
8
diversity analysis
8
analysis genetic
8
genetic distance
8
epiphytic terrestrial
8
terrestrial orchids
8
species
6
analysis
6

Similar Publications

The ability of parasitoid wasps to precisely locate hosts in complex environments is a key factor in suppressing pest populations. Chemical communication plays an essential role in mediating insect behaviors such as locating food sources, hosts, and mates. Odorant receptors (ORs) are the key connection between external odors and olfactory nerves.

View Article and Find Full Text PDF

Genomic resequencing unravels species differentiation and polyploid origins in the aquatic plant genus Trapa.

Plant J

September 2025

State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Science, Wuhan, Hubei, 430074, China.

Trapa L. is a non-cereal aquatic crop with significant economic and ecological value. However, debates over its classification have caused uncertainties in species differentiation and the mechanisms of polyploid speciation.

View Article and Find Full Text PDF

ANASFV: a workflow for African swine fever virus whole-genome analysis.

Microb Genom

September 2025

Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, PR China.

African swine fever virus (ASFV) is highly transmissible and can cause up to 100% mortality in pigs. The virus has spread across most regions of Asia and Europe, resulting in the deaths of millions of pigs. A deep understanding of the genetic diversity and evolutionary dynamics of ASFV is necessary to effectively manage outbreaks.

View Article and Find Full Text PDF

Genomic and morphological characterization of a novel iridovirus, bivalve iridovirus 1 (BiIV1), infecting the common cockle ().

Microb Genom

September 2025

International Centre of Excellence for Aquatic Animal Health, The Centre for Environment, Fisheries and Aquaculture Science, Weymouth, DT4 8UB, UK.

High rates of mortality of the common cockle, , have occurred in the Wash Estuary, UK, since 2008. A previous study linked the mortalities to a novel genotype of , with a strong correlation between cockle moribundity and the presence of . Here, we characterize a novel iridovirus, identified by chance during metagenomic sequencing of a gradient purification of cells, with the presence also correlated to cockle moribundity.

View Article and Find Full Text PDF

Background And Aims: Crop wild relatives (CWRs) are key resources for enhancing agricultural resilience, providing genetic traits that can improve pest resistance, abiotic stress tolerance, and nutritional composition in domesticated crops. Within the mustard family (Brassicaceae) this is especially significant in the Brassiceae tribe, which includes economically important genera for agriculture such as Brassica and Sinapis. However, while breeding programmes have historically focused on major crops within this tribe, the potential of their wild relatives, particularly for underutilised and minor crops, remains insufficiently explored.

View Article and Find Full Text PDF