Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Causal machine learning is an approach that combines causal inference and machine learning to understand and utilize causal relationships in data. In current research and applications, traditional machine learning and deep learning models always focus on prediction and pattern recognition. In contrast, causal machine learning goes a step further by revealing causal relationships between different variables. We explore a novel concept called Double Machine Learning that embraces causal machine learning in this research. The core goal is to select independent variables from a gesture identification problem that are causally related to final gesture results. This selection allows us to classify and analyze gestures more efficiently, thereby improving models' performance and interpretability. Compared to commonly used feature selection methods such as Variance Threshold, Select From Model, Principal Component Analysis, Least Absolute Shrinkage and Selection Operator, Artificial Neural Network, and TabNet, Double Machine Learning methods focus more on causal relationships between variables rather than correlations. Our research shows that variables selected using the Double Machine Learning method perform well under different classification models, with final results significantly better than those of traditional methods. This novel Double Machine Learning-based approach offers researchers a valuable perspective for feature selection and model construction. It enhances the model's ability to uncover causal relationships within complex data. Variables with causal significance can be more informative than those with only correlative significance, thus improving overall prediction performance and reliability.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11858830PMC
http://dx.doi.org/10.3390/s25041126DOI Listing

Publication Analysis

Top Keywords

machine learning
36
double machine
20
causal relationships
16
feature selection
12
causal machine
12
machine
10
learning
10
causal
9
gesture identification
8
relationships variables
8

Similar Publications

Introduction: Vision language models (VLMs) combine image analysis capabilities with large language models (LLMs). Because of their multimodal capabilities, VLMs offer a clinical advantage over image classification models for the diagnosis of optic disc swelling by allowing a consideration of clinical context. In this study, we compare the performance of non-specialty-trained VLMs with different prompts in the classification of optic disc swelling on fundus photographs.

View Article and Find Full Text PDF

Multi-Omics and Clinical Validation Identify Key Glycolysis- and Immune-Related Genes in Sepsis.

Int J Gen Med

September 2025

Department of Geriatrics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, People's Republic of China.

Background: Sepsis is characterized by profound immune and metabolic perturbations, with glycolysis serving as a pivotal modulator of immune responses. However, the molecular mechanisms linking glycolytic reprogramming to immune dysfunction remain poorly defined.

Methods: Transcriptomic profiles of sepsis were obtained from the Gene Expression Omnibus.

View Article and Find Full Text PDF

Accurate differentiation between persistent vegetative state (PVS) and minimally conscious state and estimation of recovery likelihood in patients in PVS are crucial. This study analyzed electroencephalography (EEG) metrics to investigate their relationship with consciousness improvements in patients in PVS and developed a machine learning prediction model. We retrospectively evaluated 19 patients in PVS, categorizing them into two groups: those with improved consciousness ( = 7) and those without improvement ( = 12).

View Article and Find Full Text PDF

Artificial intelligence (AI) is a technique or tool to simulate or emulate human "intelligence." Precision medicine or precision histology refers to the subpopulation-tailored diagnosis, therapeutics, and management of diseases with its sociocultural, behavioral, genomic, transcriptomic, and pharmaco-omic implications. The modern decade experiences a quantum leap in AI-based models in various aspects of daily routines including practice of precision medicine and histology.

View Article and Find Full Text PDF

Introduction: Spinal cord injury (SCI) presents a significant burden to patients, families, and the healthcare system. The ability to accurately predict functional outcomes for SCI patients is essential for optimizing rehabilitation strategies, guiding patient and family decision making, and improving patient care.

Methods: We conducted a retrospective analysis of 589 SCI patients admitted to a single acute rehabilitation facility and used the dataset to train advanced machine learning algorithms to predict patients' rehabilitation outcomes.

View Article and Find Full Text PDF