98%
921
2 minutes
20
The impact of creatine supplementation on individuals with kidney disease or pathological conditions with an increased risk of developing kidney dysfunction remains an active discussion. However, the literature on gene expression related to cellular creatine uptake and metabolism under altered renal function is scarce. Therefore, the present study utilized comprehensive bioinformatics analysis to evaluate the expression of creatine-related genes and to establish their relationships to normal and disturbed renal conditions. We identified 44 genes modulated explicitly in response to creatine exposure from a gene enrichment analysis, including IGF1, SLC2A4, and various creatine kinase genes. The analysis revealed associations with metabolic processes such as amino acid metabolism, indicating a connection between creatine and tissue physiology. Using the Genotype-Tissue Expression Portal, we evaluated their basal tissue-specific expression patterns in kidney and pancreas tissues. Then, we selected several pieces of Gene Expression Omnibus (GEO) transcriptomic data, estimated their expression values, and established relationships to the creatine metabolism pathways and regulation, shedding light on the potential regulatory roles of creatine in cellular processes during kidney diseases. These observations also highlight the connection between creatine and tissue physiology, emphasizing the importance of understanding the balance between endogenous creatine synthesis and creatine uptake, particularly the roles of genes such as GATM, GAMT, SLC6A8, and IGF1, under several kidney dysfunction conditions. Overall, the available data in the biological databases can provide new insights and directions into creatine's effects and role in renal function.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11858045 | PMC |
http://dx.doi.org/10.3390/nu17040651 | DOI Listing |
Nanotoxicology
September 2025
Department of Biophysics of Environmental Pollution, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland.
The effect of non-functionalized polystyrene nanoparticles (PS-NPs) with diameters of 29, 44, and 72 nm on plasmid DNA integrity and the expression of genes involved in the architecture of chromatin was investigated in human peripheral blood mononuclear cells (PBMCs). The cells were incubated with PS-NPs at concentrations ranging from 0.001 to 100 µg/mL for 24 hours.
View Article and Find Full Text PDFInt J Gen Med
September 2025
Department of Geriatrics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, People's Republic of China.
Background: Sepsis is characterized by profound immune and metabolic perturbations, with glycolysis serving as a pivotal modulator of immune responses. However, the molecular mechanisms linking glycolytic reprogramming to immune dysfunction remain poorly defined.
Methods: Transcriptomic profiles of sepsis were obtained from the Gene Expression Omnibus.
Mol Ther Methods Clin Dev
June 2025
Université Paris-Saclay, University Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, 91000 Evry, France.
Pompe disease is a glycogen storage disorder caused by mutations in the acid α-glucosidase (GAA) gene, leading to reduced GAA activity and glycogen accumulation in heart and skeletal muscles. Enzyme replacement therapy with recombinant GAA, the standard of care for Pompe disease, is limited by poor skeletal muscle distribution and immune responses after repeated administrations. The expression of GAA in muscle with adeno-associated virus (AAV) vectors has shown limitations, mainly the low targeting efficiency and immune responses to the transgene.
View Article and Find Full Text PDFMol Ther Methods Clin Dev
June 2025
Eisai Co., Ltd., Tsukuba Research Laboratories, 5-1-3, Tokodai, Tsukuba, Ibaraki 300-2635, Japan.
Liver-humanized chimeric mice (PXB-mice) are widely utilized for predicting human pharmacokinetics (PK) and as human disease models. However, residual metabolic activity of mouse hepatocytes in chimeric mice can interfere with accurate human PK estimation. Lipid nanoparticle (LNP)-formulated small interfering RNA (siRNA) treatment makes it possible to eliminate the shortcomings of chimeras and create new models.
View Article and Find Full Text PDFMol Ther Methods Clin Dev
June 2025
Shanghai Vitalgen BioPharma Co., Ltd., Shanghai 201210, China.
Bietti crystalline dystrophy (BCD) is an autosomal recessive disorder caused by loss-of-function mutations in the gene, characterized by crystal-like lipid deposits in the retina, progressive photoreceptor loss, and retinal pigment epithelium (RPE) deterioration. Currently, there are no approved treatments for BCD. VGR-R01, an investigational gene therapy, uses subretinal administration of recombinant adeno-associated virus type 8 (AAV8) vector to deliver the human CYP4V2 gene.
View Article and Find Full Text PDF