Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

As one of the most salt-sensitive crops, strawberry production is severely limited by salt stress. γ--aminobutyric acid (GABA) has been reported to play an important role in the immune response of plants. In this study, the physiological and transcriptomic changes in strawberry seedlings treated with GABA under salt stress were investigated to explore the effect of GABA on salt tolerance. The results showed that exogenous GABA maintained high osmolyte levels, increased antioxidant capacity, and decreased the ROS levels in strawberry leaves under salt stress; the MDA was reduced by 3.27-31.46%, with 10 mM being the most significant effect; the total (Spd + Spm)/ Put ratio was upregulated after GABA treatments. More strikingly, the plants treated with 10 mM GABA significantly increased chlorophyll content and net photosynthetic rate in salt-stressed plants, which was explained by the transcriptomic data showing that the expression levels of most of chlorophyll metabolism and photosynthesis-related genes were upregulated. Furthermore, 38 potential TFs belonging to the WRKY, AP2/ERF, and MYB families were identified that may be positively involved in GABA-induced salt tolerance. Co-expressed network analysis revealed that some of these TFs, such as RAP2.7, WRKY46, and MYB306, were significantly positively correlated with chlorophyll metabolism. These findings provide an important basis for the use of GABA in the breeding of strawberry resistant to salt stress.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11863477PMC
http://dx.doi.org/10.1186/s12864-025-11368-5DOI Listing

Publication Analysis

Top Keywords

salt stress
16
salt tolerance
12
physiological transcriptomic
8
gaba
8
exogenous gaba
8
strawberry seedlings
8
treated gaba
8
gaba salt
8
chlorophyll metabolism
8
salt
7

Similar Publications

Genome-wide identification analysis of aldo-keto reductase gene family in cotton and GhAKR40 role in salt stress tolerance.

Funct Integr Genomics

September 2025

Zhengzhou Research Base, State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Zhengzhou University/Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Zhengzhou, China.

In this study, a comprehensive genome-wide identification and analysis of the aldo-keto reductase (AKR) gene family was performed to explore the role of Gossypium hirsutumAKR40 under salt stress in cotton. A total of 249 AKR genes were identified with uneven distribution on the chromosomes in four cotton species. The diversity and evolutionary relationship of the cotton AKR gene family was identified using physio-chemical analysis, phylogenetic tree construction, conserved motif analysis, chromosomal localization, prediction of cis-acting elements, and calculation of evolutionary selection pressure under 300 mM NaCl stress.

View Article and Find Full Text PDF

Unlabelled: Lactobacilli, recognized as beneficial bacteria within the human body, are celebrated for their multifaceted probiotic functions, including the regulation of intestinal flora, enhancement of body immunity, and promotion of nutrient absorption. This study comprehensively analyzed the genotypic and phenotypic characteristics of () strains isolated from the intestines of healthy chicks and assessed their potential as probiotics. The assembled genome consists of 29,521,986 bp, and a total of 1,771 coding sequences (CDSs) were predicted.

View Article and Find Full Text PDF

Cancer treatment faces challenges like nonselective toxicity and drug resistance, prompting the need for innovative therapies. This study aimed to develop liposomal formulations for co-delivery of empagliflozin and rutin, evaluating their anticancer and antioxidant efficacy. PEGylated empagliflozin-loaded nanoliposomes (Empa-NLs) and empagliflozin-rutin co-loaded nanoliposomes (Empa-Rut NLs) were synthesized using the thin-film hydration technique.

View Article and Find Full Text PDF

Introduction: Transcription factors (TFs) are essential regulators of gene expression, orchestrating plant growth, development, and responses to environmental stress. , a halophytic species renowned for its exceptional salt resistance, provides an ideal model for investigating the regulatory mechanisms underlying salt tolerance.

Methods: Here, we present a comprehensive genome-wide identification and characterization of TFs in .

View Article and Find Full Text PDF

DREB7 in (L) is a novel trans-acting transcription factor (TF) that binds to the -acting sequences of promoters to activate the expression of downstream genes in response to abiotic factors. This study presents the experimental results and analyzes the relationship between the overexpression of the and , as well as the proline content, in transgenic soybean lines. The results of qRT-PCR analysis of four TG1 transgenic soybean lines (TG1-2, TG1-5, TG1-7, and TG1-10) showed that the gene had significantly higher transcriptional expression under untreated and salt stress conditions.

View Article and Find Full Text PDF