Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Spin Hall nano oscillators (SHNOs) have attracted much attention in recent years due to their great potential for applications in neuromorphic computation. However, the output power of SHNOs is very low and an external magnetic field is required to generate microwave signal continuously, which hinders the further development of SHNOs. In order to solve the two problems, we propose a new-type SHNO based on the giant magnetoresistance (GMR) effect, while retaining the advantage of the simple fabrication process of the conventional oscillator. The huge magnetoresistance ratio provided by the GMR effect can increase the power of this novel oscillator by several orders of magnitude. In addition, by designing the magnetization easy axis of the free and reference layers in the GMR film layers, this novel oscillator can operate effectively without the need of and external magnetic field. Furthermore, we have preliminarily investigated the feasibility of electrical synchronization in the field of SHNOs from the perspective of microspin simulation and found that parallel connection can provide stronger coupling strength compared with series connection. Our research solves the core problems that currently hinder the further development of SHNOs, facilitating the realization and application of large-scale synchronized array of SHNOs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11861293PMC
http://dx.doi.org/10.1038/s41598-025-90627-7DOI Listing

Publication Analysis

Top Keywords

spin hall
8
based giant
8
giant magnetoresistance
8
electrical synchronization
8
external magnetic
8
magnetic field
8
development shnos
8
novel oscillator
8
shnos
6
field-free spin
4

Similar Publications

d-wave altermagnets have magnetic octupoles as their order parameters [S. Bhowal and N. A.

View Article and Find Full Text PDF

Using angle-resolved photoemission spectroscopy (ARPES) with spin resolution, scanning tunneling microscopy/spectroscopy (STM/STS) and density functional theory (DFT) methods, we study the electronic structure of graphene-covered and bare Au/Co(0001) systems and reveal intriguing features, arising from the ferrimagnetic order in graphene and the underlying gold monolayer. In particular, a spin-polarized Dirac-cone-like state, intrinsically related to the induced magnetization of Au, was discovered at point. We have obtained a good agreement between experiment and theory for bare and graphene-covered Au/Co(0001) and have proven that both Au ferrimagnetism and the Dirac-cone-like band are intimately linked to the triangular loop dislocations present at the Au/Co interface.

View Article and Find Full Text PDF

Polariton Spin Separation and Propagation by Rashba-Dresselhaus Spin-Orbit Coupling in an Anisotropic Two-Dimensional Perovskite Microcavity.

Nano Lett

September 2025

Key Laboratory of Micro & Nano Photonic Structures, Department of Optical Science and Engineering, College of Future Information Technology, Fudan University, Shanghai 200433, China.

The separation and propagation of spin are vital to understanding spin-orbit coupling (SOC) in quantum systems. Exciton-polaritons, hybrid light-matter quasiparticles, offer a promising platform for investigating SOC in quantum fluids. By utilization of the optical anisotropy of materials, Rashba-Dresselhaus SOC (RDSOC) can be generated, enabling robust polariton spin transport.

View Article and Find Full Text PDF

Optically induced spin Hall current in monolayer Janus NbSSe: a first-principles study.

Phys Chem Chem Phys

September 2025

Department of Nanotechnology for Sustainable Energy, School of Science and Technology, Kwansei Gakuin University, 1 Gakuen-Uegahara, Sanda 669-1330, Japan.

Monolayer Janus transition-metal dichalcogenides possess Ising- and Rashba-type spin-orbit-couplings (SOC), leading to intriguing spin splitting effects at K and K', and around Γ points across the wide energy range. Using first-principles calculations, we unveil these SOC characteristics in metallic Janus NbSSe and demonstrate its potential for optically controlled spin current generation. On the basis of the symmetry of the system, we show that different linear polarized light can selectively drive spin currents of distinct spin components.

View Article and Find Full Text PDF

In this work, we investigate how the crystallographic growth direction influences spin current transmission in antiferromagnetic (AF) NiO thin films. By manipulating epitaxial growth, we explored the spin transport characteristics in LaSrMnO/NiO/Pt heterostructures grown on top of (001)- and (111)-oriented SrTiO substrates, varying the NiO barrier thickness (t). Spin currents were generated via spin pumping (SP), and detection was done by the inverse spin Hall effect (ISHE).

View Article and Find Full Text PDF