Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

MUC7, a highly glycosylated protein in saliva and respiratory tract, plays potential roles in facilitating bacterial clearance and preventing microbial invasion. The complexity of glycan structures and multiplicity of glycosylation sites of MUC7 make it very difficult to explore accurate biofunctions against pathogens. Here, we report an efficiently convergent chemoenzymatic approach to firstly synthesize highly O-glycosylated MUC7 glycopeptides with nine glycosylation sites bearing various glycoforms via the combined use of hydrophobic tag-assisted liquid-phase peptide synthesis and enzymatic-catalyzed glycan elongation. Biological evaluations reveal that different glycoforms of synthetic MUC7 glycopeptides mediate unique activities against biofilm formation of Pseudomonas aeruginosa, among which sialylated MUC7 glycopeptide exhibits better inhibitory activity and has the potential to develop antibacterial drugs.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202424312DOI Listing

Publication Analysis

Top Keywords

muc7 glycopeptides
12
highly o-glycosylated
8
o-glycosylated muc7
8
inhibitory activity
8
pseudomonas aeruginosa
8
biofilm formation
8
glycosylation sites
8
muc7
6
chemoenzymatic synthesis
4
synthesis highly
4

Similar Publications

Chemoenzymatic Synthesis of Highly O-Glycosylated MUC7 Glycopeptides for Probing Inhibitory Activity against Pseudomonas aeruginosa Biofilm Formation.

Angew Chem Int Ed Engl

May 2025

State Key Laboratory of Chemical Biology, Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.

MUC7, a highly glycosylated protein in saliva and respiratory tract, plays potential roles in facilitating bacterial clearance and preventing microbial invasion. The complexity of glycan structures and multiplicity of glycosylation sites of MUC7 make it very difficult to explore accurate biofunctions against pathogens. Here, we report an efficiently convergent chemoenzymatic approach to firstly synthesize highly O-glycosylated MUC7 glycopeptides with nine glycosylation sites bearing various glycoforms via the combined use of hydrophobic tag-assisted liquid-phase peptide synthesis and enzymatic-catalyzed glycan elongation.

View Article and Find Full Text PDF

Lectin domains of polypeptide GalNAc transferases exhibit glycopeptide binding specificity.

J Biol Chem

September 2011

Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, USA.

UDP-GalNAc:polypeptide α-N-acetylgalactosaminyltransferases (GalNAc-Ts) constitute a family of up to 20 transferases that initiate mucin-type O-glycosylation. The transferases are structurally composed of catalytic and lectin domains. Two modes have been identified for the selection of glycosylation sites by GalNAc-Ts: confined sequence recognition by the catalytic domain alone, and concerted recognition of acceptor sites and adjacent GalNAc-glycosylated sites by the catalytic and lectin domains, respectively.

View Article and Find Full Text PDF

Cancer-associated autoantibodies hold promise as sensitive biomarkers for early detection of cancer. Aberrant post-translational variants of proteins are likely to induce autoantibodies, and changes in O-linked glycosylation represent one of the most important cancer-associated post-translational modifications (PTMs). Short aberrant O-glycans on proteins may introduce novel glycopeptide epitopes that can elicit autoantibodies because of lack of tolerance.

View Article and Find Full Text PDF

To date, 10 members of the UDP-N-acetyl-alpha-d-galactosamine:polypeptide N-acetylgalactosaminyltransferase (pp-GalNAc-T) family have been cloned and analyzed in human. In this study, we cloned and analyzed a novel human pp-GalNAc-T from an NT2 cell cDNA library, and we named it pp-GalNAc-T13. In amino acid sequences, pp-GalNAc-T13 was highly homologous, showing 84.

View Article and Find Full Text PDF

The conformational features of a chemically synthesized 23-residue glycopeptide construct (II) carrying Gal-beta-(1,3)-alpha-GalNAc and its deglycosylated counterpart (I; Gal: galactose; GalNAc: N-acetyl galactosamine) derived from the C-terminal domain of human salivary mucin (MUC7) were investigated using CD spectroscopy as well as molecular dynamic simulation studies. The corresponding deglycosylated peptide (I) was essentially used to compare and study the influence of the sugar moiety on peptide backbone conformation. CD measurements in aqueous medium revealed that the apopeptide (I) contains significant populations of beta-strand conformation while the glycopeptide (II) possess, partly, helical structure.

View Article and Find Full Text PDF