Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Wilms tumor 1 associated protein (WTAP) is a key RNA N6-methyladenosine (mA) methylase, which is involved in gastric cancer (GC) development, but its pathogenic mechanism is not clear. This study aims to thoroughly explore the underlying molecular mechanism of WTAP-mediated mA modification in GC pathogenesis. qRT-PCR and immunohistochemistry showed that significantly elevated WTAP expression in GC tissues and is related to advanced age, poorly differentiation, lymph node metastasis and high TNM stage. Overexpression and knockdown of WTAP could promote or inhibit the proliferation, migration and invasion of GC cells , furthermore, suppression of WTAP expression impeded the growth of xenograft tumors Utilizing RNA sequencing, methylated RNA immunoprecipitation (MeRIP) sequencing and bioinformatics analysis, we identified MAP2K6 as direct downstream target of WTAP with mA modification in GC. The interaction between WTAP and MAP2K6 was confirmed by MeRIP-qPCR, luciferase reporter assay, Co-IF and bioinformatics prediction. Immunofluorescence and rescue studies were performed to verify WTAP-mediated mA modification promotes the proliferation, migration, and invasion of GC cells by positively regulating the target gene MAP2K6. This underscores the potential therapeutic significance of targeting the WTAP-MAP2K6 axis in combating GC occurrence and progression.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11843227PMC
http://dx.doi.org/10.7150/jca.98559DOI Listing

Publication Analysis

Top Keywords

modification promotes
8
gastric cancer
8
wtap-mediated modification
8
wtap expression
8
proliferation migration
8
migration invasion
8
invasion cells
8
wtap
6
wtap-mediated n6-methyladenosine
4
modification
4

Similar Publications

X-chromosome inactivation (XCI) in mammals is orchestrated by the noncoding RNA X-inactive-specific transcript (Xist) that, together with specific interacting proteins, functions in cis to silence an entire X chromosome. Defined sites on Xist RNA carry the N-methyladenosine (mA) modification and perturbation of the mA writer complex has been found to abrogate Xist-mediated gene silencing. However, the relative contribution of mA and its mechanism of action remain unclear.

View Article and Find Full Text PDF

ALYREF stabilizes CREPT mRNA to accelerate the development of nasopharyngeal carcinoma through dependence on m5C modification.

Exp Cell Res

September 2025

The Department of Hematology, The First Affiliated Hospital of Hainan Medical University, No.31 Longhua Road, Haikou City, Hainan Province, 570000, P.R. China. Electronic address:

Background: Nasopharyngeal carcinoma (NPC) is a kind of tumor disease with high malignant degree. CREPT expression was elevated abnormally in multi-cancers. However, the role and regulatory mechanism of CREPT in NPC remains unknown.

View Article and Find Full Text PDF

The malignant manifestation of breast cancer is driven by complex molecular alterations that extend beyond genetic mutations to include epigenetic dysregulation. Among these, DNA methylation is a critical and reversible epigenetic modification that significantly influences breast cancer initiation, progression, and therapeutic resistance. This process, mediated by DNA methyltransferases (DNMTs), involves the addition of methyl groups to cytosine residues within CpG dinucleotides, resulting in transcriptional repression of genes.

View Article and Find Full Text PDF

With growing public attention to environmental issues and sustainable development, biodegradable bio-based plastics have attracted widespread interest. This study reveals the chemical-physical synergistic regulation mechanism of biodegradable PLA/PBAT blends through the synergistic modification of epoxidized natural rubber (ENR) and epoxy chain extender (ADR). Interfacial interaction analysis shows that PBAT tends to encapsulate ENR to form aggregates.

View Article and Find Full Text PDF

In recent years, the incidence of orthopedic diseases has increased significantly, while traditional treatments often face limitations such as limited efficacy and pronounced side effects. The development of nanomedicine technology provides novel strategies for orthopedic disease treatment. As an emerging two-dimensional (2D) nanomaterial, black phosphorus nanosheets (BPNS) demonstrate remarkable potential in treating orthopedic diseases due to their unique physicochemical properties, superior biocompatibility, and the fact that their degradation product-elemental phosphorus-constitutes an essential component of bone tissue.

View Article and Find Full Text PDF