Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Global viral threats underscore the need for effective genomic surveillance, but high costs and uneven resource distribution hamper its implementation. Targeting surveillance to international travelers in major travel hubs may offer a more efficient strategy for the early detection of SARS-CoV-2 variants.

Methods: We developed and calibrated a multiple-strain metapopulation model of global SARS-CoV-2 transmission using extensive epidemiological, phylogenetic, and high-resolution air travel data. We then compared baseline surveillance with various resource-allocation approaches that prioritize travelers, focusing on Omicron BA.1/BA.2 retrospectively and on hypothetical future variants under different emergence, transmission and vaccine effectiveness scenarios.

Findings: Focusing existing surveillance resources on travelers at key global hubs significantly shortened detection delays without increasing total surveillance efforts. In retrospective analyses of Omicron BA.1/BA.2, traveler-targeted approaches consistently outperformed baseline strategies, even when overall resources were reduced. Simulations indicate that focusing surveillance on key travel hubs outperform baseline practices in detecting future variants, across different possible origins, even with reduced resources. This approach also remains effective in future pandemic scenarios with varying reproductive numbers and vaccine effectiveness.

Interpretation: These findings provide a quantitative, cost-effective framework for strengthening global genomic surveillance. By reallocating resources toward international travelers in select travel hubs, early detection of emerging variants can be enhanced, informing rapid public health interventions and bolstering preparedness for future pandemics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11844623PMC

Publication Analysis

Top Keywords

genomic surveillance
12
early detection
12
travel hubs
12
global genomic
8
surveillance
8
detection emerging
8
international travelers
8
omicron ba1/ba2
8
future variants
8
optimizing global
4

Similar Publications

Background: Solid organ transplant (SOT) recipients are not only at increased risk of morbidity and mortality due to acute COVID-19 but may also experience poor long-term outcomes due to post-acute COVID-19 syndromes, including long COVID.

Methods: This retrospective, registry-based chart review evaluated graft failure and mortality among SOT recipients diagnosed with COVID-19 at a large, urban transplant center in Houston, Texas, USA. Patient populations were analyzed separately according to their long COVID status at the time of transplant to preserve the temporal relationship between the exposure (long COVID) and the outcome (graft failure or mortality).

View Article and Find Full Text PDF

Assessing thyroid peroxidase antibodies in Emirati medical students: a cross-sectional pilot study.

Front Endocrinol (Lausanne)

September 2025

Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.

Introduction: Anti-thyroid peroxidase antibodies (TPO-Ab) are detectable in almost all patients with autoimmune thyroid disease or Hashimoto's thyroiditis (HT) but may also be present in healthy individuals. HT affects women to a greater extent than men and can lead to overt hypothyroidism, which may increase the risk of miscarriage. There are no local data available on the prevalence of TPO-Ab among healthy women in the United Arab Emirates.

View Article and Find Full Text PDF

Tuberculosis (TB) remains one of the leading causes of infectious disease mortality worldwide, increasingly complicated by the emergence of drug-resistant strains and limitations in existing diagnostic and therapeutic strategies. Despite decades of global efforts, the disease continues to impose a significant burden, particularly in low- and middle-income countries (LMICs) where health system weaknesses hinder progress. This comprehensive review explores recent advancements in TB diagnostics, antimicrobial resistance (AMR surveillance), treatment strategies, and vaccine development.

View Article and Find Full Text PDF

Immediate and durable effects of maternal tobacco consumption on placental DNA methylation: a replication and discovery study.

Environ Epigenet

May 2025

Université Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institut pour l'Avancée des Biosciences (IAB), Team of Environmental Epidemiology Applied to Development and Respiratory Health, 38000 Grenoble, France.

An increasing number of epigenome-wide association studies report tobacco smoking-associated DNA methylation levels. However, comprehensive replication studies remain scarce, particularly in placenta, despite their crucial interest in such a large-scale context. Using DNA methylation data from the EPIC array of 341 new placentas (85 smokers, 219 non-smokers, and 37 former smokers) from the EDEN cohort, we used a candidate approach to replicate maternal smoking-associated CpGs and regions previously identified using the 450K array, and an exploratory approach to discover new associations within EPIC-specific CpGs.

View Article and Find Full Text PDF

Arenaviruses and Hantaviruses, primarily hosted by rodents and shrews, represent significant public health threats due to their potential for zoonotic spillover into human populations. Despite their global distribution, the full impact of these viruses on human health remains poorly understood, particularly in regions like Africa, where data is sparse. Both virus families continue to emerge, with pathogen evolution and spillover driven by anthropogenic factors such as land use change, climate change, and biodiversity loss.

View Article and Find Full Text PDF