Nuciferine Restores Autophagy via the PI3K-AKT-mTOR Pathway to Alleviate Renal Fibrosis in Diabetic Kidney Disease.

J Agric Food Chem

International Cooperation Base for Active Substances in Traditional Chinese Medicine in Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, 182 min-Zu Road, Wuhan 430074, China.

Published: March 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Diabetic kidney disease (DKD) is one of the complications of diabetes mellitus, which triggers kidney fibrosis and eventually develops into end-stage renal disease. Nuciferine (NF) is one of the most important functional components in lotus leaves (LL), but its role and mechanism for the treatment of DKD are unclear. A high-fat-diet (HFD)-induced DKD model in KK-AY mice was established in this study. NF treatment significantly improved blood glucose and blood biochemical indices in DKD mice. Furthermore, NF reduced the levels of mALB, UCRE, Scr, and BUN in mice urine. Further, the extent of renal lesions in the mice in this study was at stage IV according to the Mogensen staging method. NF treatment was effective in ameliorating renal injury during this period. Concurrently, the protein levels of FN, N-cadherin, TGFβ, p-Smad3, p-PI3K, p-AKT, p-mTOR, and p62 were decreased. In contrast, the level of expression of Beclin-1 was increased. In the high glucose-exposed HK-2 cell model, the expression of p-PI3K, p-AKT, and p-mTOR was all downregulated, and autophagy proteins were increased after NF intervention. In addition, HK-2 cells were treated with high glucose in combination with Wortmannin and 3-MA, respectively. The results demonstrated that NF inhibited the expression of TGFβ and p-Smad3 by regulating autophagy through the PI3K-AKT-mTOR pathway, thereby ameliorating renal fibrosis at stage IV in mice. Therefore, LL can be used as a dietary component for the prevention of renal fibrosis in DKD patients.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jafc.4c08844DOI Listing

Publication Analysis

Top Keywords

renal fibrosis
12
autophagy pi3k-akt-mtor
8
pi3k-akt-mtor pathway
8
diabetic kidney
8
kidney disease
8
ameliorating renal
8
tgfβ p-smad3
8
p-pi3k p-akt
8
p-akt p-mtor
8
renal
6

Similar Publications

Metabolic dysfunction-associated steatotic liver disease (MASLD) has emerged as a major contributor to systemic metabolic dysfunction and is increasingly recognized as a risk enhancer for both cardiovascular disease (CVD) and chronic kidney disease (CKD). This review explores the complex interconnections between MASLD, CVD, and CKD, with emphasis on shared pathophysiological mechanisms and the clinical implications for risk assessment and management. We describe the crosstalk among the liver, heart, and kidneys, focusing on insulin resistance, chronic inflammation, and progressive fibrosis as key mediators.

View Article and Find Full Text PDF

Background: Chronic kidney disease (CKD), a global health challenge, is closely linked to renal fibrosis progression. Copper, an essential trace element, influences cellular functions, yet its role in CKD-related fibrosis remains unclear. This study explores the causal relationship between serum copper levels and renal fibrosis in CKD.

View Article and Find Full Text PDF

MR409, a synthetic growth hormone-releasing hormone (GHRH) analogue, has demonstrated therapeutic potential in enhancing islet cell transplantation efficacy in diabetes mice and exerts beneficial effects on cardiovascular diseases. The present study investigated the renoprotective effects of MR409 on db/db and streptozotocin (STZ)-induced diabetic mice, focusing on its role in modulating oxidative stress and ferroptosis. db/db or STZ mice combined with high fat diet were used to establish the type 2 diabetic models.

View Article and Find Full Text PDF

HMGCS2 attenuates mitochondrial dysregulation and renal fibrosis induced by triclosan.

Ecotoxicol Environ Saf

September 2025

Department of Cardiology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; School of Basic Medicine, Anhui Medical University, Hefei 230032, China. Electronic address:

Renal fibrosis represents a critical pathological mechanism driving the progression of chronic kidney disease toward end-stage renal failure, primarily characterized by the proliferation and deposition of connective tissue within the renal tissue. Triclosan is a widely used synthetic antibacterial agent, and previous studies have demonstrated that TCS exposure interferes with renal fibrosis. However, the pathogenetic mechanism between TCS and renal fibrosis is still unclear.

View Article and Find Full Text PDF